MS-BASIC

COPYRIGHT

TR e A VR LT
TRADEMARKS

S A SRS
NOTICE

© 1983 by VICTOR.®
© 1979 by Microsoft Corporation.

Published by arrangement with Microsoft Corporation, whose
software has been customized for use on various desktop
microcomputers produced by VICTOR. Portions of the text hereof
have been modified accordingly.

All rights reserved. This publication contains proprietary infor-
mation which is protected by copyright. No part of this publication
may be reproduced, transcribed, stored in a retrieval system,
translated into any language or computer language, or transmitted
in any form whatsoever without the prior written consent of the
publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

VICTOR is a registered trademark of Victor Technologies, Inc.
MS-DOS is a registered trademark of Microsoft Corporation.
CP/M-86 is a registered trademark of Digital Research, Inc.

VICTOR makes no representations or warranties of any kind
whatsoever with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or fitness for
any particular purpose. VICTOR shall not be liable for errors
contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this
publication or its contents.

VICTOR reserves the right to revise this publication from time to
time and to make changes in the content hereof without obligation
to notify any person of such revision or changes.

First VICTOR printing April, 1983.

ISBN 0-88182-066-0 Printed in U.S.A.

I. General Information
About MS-BASIC

2. MS-BASIC
Commands and
Statements

R e T e e P e e P e I B e e

CONTENTS
11 IBHORUEHON o v wsms v s sy b st sy ok Rk A 1
1.2 Moes of Operation ...veems s s s o iine dae s 1
1.3 Line Format ang Ling NUmMbBErs ... isavmviviives i i 1
1.4 “ChamcterSel | couin iy s i desse s sy 2
1.41 Special Characters and Terminal Keyscooo0. 2
.42 Alternate ©haraclens o i wsymdoummemmen e sy 3
FiB CONSHEATS movnd s v s i o R R T R R 3 3
1.51 8Single and Double Precision Form for
MBI CORSEINIE oot s ® s mie otk s e s 4
18 VEANBBIEE . . ononmmmad mmesae e e moae b W b e e 4 5
161 Variable Names and Declaration Characters 5
.62 Array Varlahles: .u.escicibe i e s o s vivisiia 6
1.6:3 Space REqUirements woi diiniinvive sves sre s 6
17 e CoPVerBIoN < ammens aviis B avy By shm ani s aaiin 6
1.8 Expressions and Operationscoviiiiinavisniinnes .
1:8:1 Atithrmietic ODperalors o is soevy dvesivnsye sg svimsv s was 8
1.8.1.2Integer Division and Modulus Arithmetic 9
1.8.1 .3 Qverflow and Division by Zero
182 Befational Operatorsio e ez oraonareeens
(143 Udgical Qperators, ., L3111
184 Functional CperatorsA......
1.8.5 String Operalions v oii v sinamsn s sidiv oy
1.9 Inpit Bding: . bvesi s mvniaseiiaserrpans sl Sa b
110 Error MeSsapes: wau van ses sl ns i smwam e M 8L Rsieny
D CAEEDR wnrcar s s s e ey s e e s e Sk s 15
D0 BALL . v avimormm e et e R SR R e 16
2.3 SEHAIN: o e s s s e b SRS S e e s 17
D BEEAR s e A e S e S 18
DR BLOBE s e e e R R I R R 19
D6 COMMON cumvousvmn e s s s S R s m s bl 20
2T BONT s s s i s s o el S e S s e v 21
B o T P 22
29 BEFFN oo v s s aaie sism S ms e s sie s 23
210 ‘DEF INT JSNG/DBLISTR v vivw veiv sins Siny sy shacsimmsimmvaisie s ddb o8 24
B4 DEF BEG «vormmmmmnmy wwpesm ol st skt 4 s s e e s e g 24
22 DEFUSH . v s sy moge bt s s 0005 S8R0 RERR SRS 25
243 BELETE .. .o i s s i s amnmiseiivnss e evss 26
S DL o e, S A R R e SR U 26
PG BIHT Gyt ou v o e ma s s e e s o i o R b w0 27
FHB END. oyt s e o0 D v e S S R A 30
e A = - P 30
218 ERR and ERL VariablBsce.eiwmmsanomisemssntsnaiii: 31
238 ERROR womsmrmmimommms s d A L o RS B s 31

3. MS-BASIC Functions

2.20
2.21

2.22
223
2.24
2:25
226
227
2.28
229
2.30
231

232
233
234
235
2.36
2.37
2.38
2.39
240
2.41

242
2.43
2.44
2.45
2.46
247
2.48
249
250
251

2.52
253
2.54
250
256
2,57
258
2.59
260
2.61

262
2,63
2.64
265
2.66
267

31
32
33
34
35
3.6

BEIR o0 o NEXT v mamismumonemsnom s manmsms s s sminapmoaiag 33
L) N e VSRR O 0 S RO I = . 34
GOSUBR ... BETHIBN ..o snm vt s s 35
R P T e SR A S YL B O IO 35
e o o THEMN ., . ELSELaNd IF, ., BT fieiesmamimmmein 36
INPUT wsanmmmemmssm s i e e b e e s s v 37
INPUTHE oo iesds s saaam imaes v de o 38
BHLL. commmmmsmasm e S R S S S 39
T 40
LINEWNPLIT convaasamumsemumamormeniamvse b e o ness 40
LINEINPUTH coinnwn sonm i s s s g ssambn 41
REMETT o o e om0 R S S Ao 41
211 NN SN SSON RSN 1 SFSI SSSo? 42
i T AT N BRSNS, S SO (0 43
LPRINT and LPRINT USINGociiniiiiiiinineanennns 43
ESET ANDBBET i i inn i i e i skemsmssiians & 43
MERGIE v s smn oo S0 050 055 555 050 555 755 945 005 5vi e o 44
e L e) 45
BIARNE v s auep s sy o o ey Vot 1y ety s U000 BN b 45
O Ty 46
BLIL LS ops s somsssrsommomoniassosianiatrans: i-4csn 0 A s W e 46
ON ERBOR GOTLY o s v st s e sl s staseriies 46
ON.. ... GOTO and'ON.. .. GOBUE . s wumwassiwess e 47
QRN A il sy o b b eams sk e e at 47
QR FIONIBEEE | .o irmmmeaseabinss i e M b e s st 48
T e L G OO -4 .5 48
BEIICE: o i i B e s i mos o b 49
PRINT couisommamsm e s e s s i o nia s e s sty b 49
BRINT BEING - comvanamenms s s s m e e e 51
ERUSTEAND PRINTHUBING +ouiovuineisiiamais i 54
P o B B A B T e e 56
RANDGOMIZE ovvmmumsbimeise s s a sy s s e i 57
BREADY: S sosnmsmmussmo samss i emie s s s s sy 57
BBV s o st e st v s st oo oo s oo o M A i 58
REBUIRE . v e somin s wivdes oo i s b e 59
BESTORE o uvmmmsosmtmsmss s st i vt s 60
BEGUME .\ o sonnomonmssmm e, n wimss sy b b Sumsass 61
BREIN - i s s s e cotessiammmss s s e 61
SAVE wn man S o e e v e e B 62
BIOE wovnvws e ieh o Lal e D SEa SRS s 63
SUVAPY wov st v wnmarson s w18 saH SO S0 P PR R R AT 63
TRONITROFE o snersn s s simb oo s i s viéim 64
o T R 65
WHILE ... WEND ... i eiiaiaieanns 65
WHERTIE- . . o oimtmicsomomms svenssmnoditmgissdtinp ot et s S50 B 3950 O 66
. o R S et e b sz s it sl 67
WIBETER sy esenins sie e sue raain oon S50 S50 150 650 e exs il 67
215 5 R e Ut 69
PUBICH | poswnenenosiesos oo oo o6 00 AT AT B S R e 69
HEBE o e e s B R S A R 70
HABL 5 S b neseameemn e Bk s i 70
CHES o o D0 155 000 0 i MG i S i M i i A 70
GABIT s aiams siets wis Sl 00 00 B0 S i A A D B 71

Appendixes

O DRTER. . oo son i a0 S S S S S B
1) BOP - oo caml i i it e s S e e VIR W S
BAR EXP oo i st v s st soimal s B i S o S A
T8 T s ooy oot e, B s A1 A S 0
AR Lo v o R A Ao R PR R
S BT . v o e e b e S O AT
T8 MUEEYE L. v s womrsomvmsmsmin imissoss soisse e i s o s g a0
BV BN L s s oo e oy s s s Mo s e
BB INPUTEo v smiminressintsmas simss sinssiosmmonssaimen s ssismn s soiis 5533, 55578
2 N S S oo o
R e T
SAPEBERTR. i s S R e R
G BENT o s e e e e S e S s S
0T LOB . soi i s o e i s S S S e T B S S
Ol L e D A S P T
BEE EPEIS. . onoisis s s s e b s some sl s s s st S0 o v, 58 e
TP WHDIB i s b s v v s i b NI % 3707 i

BB DIDTE. | oot mms s 5o s sin st s witi S seibianie
BV PERIC . . oo mrar st b A e S e, e
SO BOIEL . | e my s s s s s i et wh S b
S BGOSR ooy o s o 550 568 S50 850 90, Sl S
S WM e e A T S S e e S
B8 AN . S R T R R S s S PRI
B304 BIN s e A Y T A B B S0 VR e
SBE) BRPABED .« civisnmiosrin vy b dim 2150 S40 S0l wiate vt A0ch s
BBO BRE oo s ishoss g v i s s w48 05 oTele a0 o sind il wenbusd
BT BOIR i ssmvnitiss o s 63881600 S8 6540 50T w3w T T m 0 A AR
BB ST | o smarsan s s Hase A A oN TR0 T GRS S
330 STRINGEE ..ccsvurini wonmmmimmmmnimonis sivin s s s s e sioiss
B0 TRB o vomnssinsbionnamsmsmmnon sty £ sa st A m s A
FAT TAN . . s o m s ot B0 $300 ST TER SRR
FHE TINEL oot e Bl S0 SHS S S M S A s
38 VSR . ois so il a7h 50 S50 S50 VIR SR SRR p R)
Bad VAL e e S o R s

APPENDIX A: CONVERTING PROGRAMS TO MS-BASIC

A1 String DIMENSIONS .. ovtiiiai et it iiiaiaaeens
A2 Multiple ASSIgNMENES viirineirairariisarsnss
HBT Ml SIBtements) .., oo vie s e SR ET RIS
A MAT BURCHBNS s vsc oma o3 530 siiv sbi sl oswasaasmains

APPENDIX B: MS-BASIC DISK 1/O

B.1 Program File Commandsviviiiiiiiviairionaas,
B2 ‘Protacted Elle: sus cun sun aus svn swm s sy masaeis s
B.3 Disk Data Files - Sequential and Random I/O

Vi

APPENDIX C: USING MS-BASIC WITH THE CP/M-86
OPERATING SYSTEM

Gl IRHRIBHZAMETT v e vramwmiims b s aete s TR b a A e 98
G2 DIBK FIEE woumsums: eove:armisssonas munssss s s s oo niin ceon 99
CB FUBE GBI v sroimomsiessmie s i isms: s s » 6 s sam 99
C4 Reset Commandovverrurionnerneneaieeenennns 100
C.5 LOF FUNGYHON v s s s simm sy imom s s siss s s 100
G B s s s A b e e 100
G WIRCRIBRBONS .o sesai s R AR AR e g 100

APPENDIX D: USING MS-BASIC WITH THE MS-DOS
OPERATING SYSTEM

] VEIEIEREIN oo s s s sl i s o S S 101
2 DS TS . mommmm s erson s s i i e e 102
D QS IR sk e e e e 102
D.4 Reset Command o ..uevteneeureet e 103
RS LOF EURGHAN 2 eomcmmsmtonesmen i ne i s g e wsa A 103
LI BOIE e s ok s e e s e e s 103
OF MseolBREO0S =m v s i e v v e e 5o e s b 103

APPENDIX E: ASSEMBLY LANGUAGE SUBROUTINES

Ed MEEr BUSEBHON womsmemnaguems s s s smaonis 104
E2 Using the CALL SIAIBMBNE .uwwemesmssssmnsmr smims s 104
E.3 Using USR Function Callscoovvivvrnrennnnenn.. 108

APPENDIX F. MS-BASIC COMPILER

Eit Operalicnal Bitferénges s seivmesrssvassnsmonpisy 111
F.2 Language Differencescciiviiaiiniiasiaasie, 112
F:3 Expredsion EVBILAHEN «iwaevuswawmmmmossms wosseevons 114
Fd Integer VAASBIEE oo s s s s s 15

APPENDIX G SUMMARY OF ERROR CODES AND ERROR

MESSAGES . oaisiamsiniam i s s asies 116
APPENDIX H: MATHEMATICAL FUNCTIONScoovinnnn 121
APPENDIX I: ASCIl CHARACTER CODESccoivniinnnn.. 122

FIGURES

TABLES

FIGURES AND TABLES

B-1 Creating a Sequential Data Filecooeiiiiiiiiin,
B-2 Accessing a Sequential File ..o,
B-3 Adding Data to a Sequential Filecocoviniiaiaiins
B-4 Creating a Random Filec.iviiniiniieiciiniiniines
B-5 Accessing a Random File ...ucvimevscmviresvisansrionnes
B-6 Example Program Using a Random Access File
E-1 Stack Layout When Call Statement is Activated

E-2

Stack Layout During Executicn of a Call Statement

1

MS-BASIC Special Characters and Terminal Keys
Single- and Double-Precision Form Constants Examples

Precedence QOrder of Arithmetic Variables
Algebraic Expressions and Their MS-BASIC Counterparts
Relational Operatarscesveesevsssessesdasiansdasivagss
Outcomes of Logical Operationsc.eveuiiarienerenaeas

_4___._._;
N AT S

vil

&

P

R A S
1.1 INTRODUCTION

e T |
1.2 MODES OF
OPERATION

1.3 LINE FORMAT
AND LINE NUMBERS

1. GENERAL INFORMATION ABOUT MS-BASIC

MS-BASIC is the most extensive implementation of MS-BASIC available
for microprocesscrs. MS-BASIC meets the ANSI qualifications for
MS-BASIC, as set forth in document BSRX3.60-1978. Each release of
MS-BASIC is compalible with previous versions.

The manual is divided into three large chapters and nine appendixes.
Chapter 1 covers a variety of topics, largely pertaining to data
representation in MS-BASIC. Chapter 2 contains the syntax and
semantics of every command and statement in MS-BASIC, ordered
alphabetically. Chapter 3 describes all of MS-BASIC's intrinsic
functions, also ordered alphabetically. The appendixes tell how to use
MS-BASIC on the computer and its two operating systems, CP/M-86
and MS-DOS. They also contain a list of error messages and codes,
a list of mathematical functions, and a list of ASCII character codes.

When MS-BASIC is initialized, it types the prompt "Ok". "Ok" means
MS-BASIC is’ at command-fevel — that is, it js ready to accept
commands. AL thig paint, MS-BASIC may (be used in, either of two
modes: the direct mode or the indirect mode.

In the direct mode, MS-BASIC statements and commands are not
preceded by line numbers. They are executed as they are entered.
Results of arithmetic and logical operations may be displayed
immediately and stored for later use, but the instructions themselves
are lost after execution. This mode is useful for debugging and for
using MS-BASIC as a "calculator” for quick computations that do not
require a complete program.

The indirect mode is the mode used for entering programs. Program
lines are preceded by line numbers and are stored in memory. The
program stored in memory is executed by entering the RUN
command,

Program lines in a MS-BASIC program have the following format
(square brackets indicate something that is opticnal):

nnnnn BASIC statement [:BASIC statement ...] <RET>

At the programmer’s option, more than one MS-BASIC statement may

be placed on a line, but each statement on a line must be separated

from the last by a colon. A MS-BASIC program line always begins with
a line number, ends with a carriage return, and may contain up to of

255 characters.

e s e
1.4 CHARACTER SET

1.4.1 SPECIAL
CHARACTERS AND
TERMINAL KEYS

It is possible to extend a logical line over more than one physical line
by use of the ALT-J key. ALT-J lets you continue typing a logical line
on the next physical line without entering a <RET>

Every MS-BASIC program line begins with a line number. Line
numbers indicate the order in which the program lines are stored in
memory and are used as references when branching and editing.
Line numbers must be in the range 0 to 65529. A period () may be
used in EDIT, LIST, AUTO and DELETE commands to refer to the
current line.

The MS-BASIC character set is comprised of alphabetic charz :ters,
numeric characters and special characters. The alphabetic characters
in MS-BASIC are the uppercase and lowercase letters of the alphabet.
The numeric characters are the digits 0 through 9.

The following special characters and terminal keys are recognized by
MS-BASIC:

Table 1-1: MS-BASIC Special Characters and Terminal Keys

CHARACTER NAME
Blank
= Equal sign or assignment symbol
+ Plus sign
- Minus sign
- Asterisk or multiplication symbol

Slash or division symbol

Up arrow or exponentiation symbol

Left parentheses

Right parenthesis

Percent

Number {or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)

Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

. Backslash or integer division symbol
(@ At-sign
_— Underscore

backspace Deletes last character typed.

<escape> Escapes Edit Mode subcommands.

See Section 2,16

B T

F N D

1.4.2 ALTERNATE
CHARACTERS

1.5 CONSTANTS

<tab> Moves print position to next tab stop.
Tab stops are every eight columns.
ALT-J Moves to next physical line
<carriage return> Terminates input of a line.

The following alternate characters are in MS-BASIC:
ALT-A Enters Edit Mode on the line being typed.

ALT-C Interrupts program execution and returns to
MS-BASIC command level.

ALT-G Rings the bell at the terminal.

ALT-H Backspace. Deletes the last character typed.
ALT-I Tab. Tab stops are every eight columns.
ALT-R Retypes the line that is currently being typed.
ALT-S Suspends program execution.

ALT-Q Resumes program execution after ALT-S.
ALT-U Deletes the line that is currently being typed.

Conslants are the actual values MS-BASIC uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up 1o 255 alphanumeric
characters enclosed in double quotation marks. Examples of string
constants:

Example:

“HELLO"
“$25,000.00"
“Number of Employees”

Numeric constants are positive or negative numbers., Numeric
constants in MS-BASIC cannot contain commas. There are five types
of numeric constants:

1. Integer constants Whole numbers between -32768 and
+32767. Integer constants do not have
decimal points.

2. Fixed Point Positive or negative real numbers,
constants i.e., numbers that contain decimal points.

3 Floating Point Positive or negative numbers represented
constants in exponential form (similar to scientific

notation). A floating point constant
consists of an optionally signed integer or

1.5.1 SINGLE-AND
DOUBLE-PRECISION
FORM FOR NUMERIC
CONSTANTS

fixed point number (the mantissa)
followed by the letter E and an optionally
signed integer (the exponent). The
allowable range for floating point
constants is 10-38 to 10+38.

Examples:

235.9881E-7 = .00002359881
2359E6 = 2358000000

(Double precision floating point constants

use the letter D instead of E. See Section
151

4, Hex constants Hexadecimal numbers with the prefix &H.
Examples:

&H76
&H32F

5. Octal constants Octal numbers with the prefix &0 or &.
Examples:

&0347
&1234

Numeric constants may be either single-precision or double-precision
numbers. Single-precisicn numeric constants are stored with 7 digits
of precision, and printed with up to 7 digits. With double precision, the
numbers are stored with 16 digits of precision, and printed with up to
16 digits

A single-precision constant is any numeric constant that has:
> Seven or fewer digits

» Exponential form using E

» A trailing exclamation point (!)

A double-precision constant is any numeric constant that has:
» Eight or more digits

» Exponential form using D

» A trailing number sign (#)

R AT S 2
1.6 VARIABLES

1.6.1 VARIABLE
NAMES AND
DECLARATION
CHARACTERS

EXAMPLES:

O e e i ey s e S i O e O R T i S T Wers)
Table 1-2: Single- and Double-Precision Form Constants

Examples
SINGLE-PRECISION DOUBLE-PRECISION
CONSTANTS CONSTANTS
468 345692811
-1.09E-06 -1.094320D-06
3489 0 3489.0#
22.5! 7654321.1234

Variables are names used to represent values that are used in a
MS-BASIC program. The value of a variable may be assigned while
designing a program, or it may be assigned as the results of
calculations performed by a program. Before a variable is assigned a
value, its value is assumed to be zero.

MS-BASIC variable names may be any length up to 40 characters. A
variable name may contain letters and numbers, and the decimal
point. The first character must be a letter. Special type declaration
characters are also allowed — see below.

A variable name may not be a reserved word, but embedded
reserved words are allowed. If a variable begins with FN, it is
assumed to be a call to a user-defined function. Reserved words
include all BASIC commands, statements, function names and
operalor names.

Variables may'represent either a'numeric’ value‘er a-string.

String variable names are written with a dollar sign ($) as the last
character. For example: A$ = "SALES REPORT". The dollar sign is a
variable type declaration character, that is, it "declares” that the
variable will represent a string.

Numeric variable names may declare integer, single- or
double-precision values. The type declaration characters for these
variable names are as follows

% Integer variable
! Single-precision variable
Double-precision variable

The default type for a numeric variable name is single precision.
Examples of MS-BASIC variable names follow.

PI# declares a double-precision value
MINIMUM! declares a single-precision value
LIMIT% declares an integer value

N§ declares a string value

ABC represents a single-precision value

1.6.2 ARRAY
VARIABLES

1.6.3 SPACE
REQUIREMENTS

TN SIS AT
1.7 TYPE
CONVERSION

There is a second method by which variable types may be declared.
The MS-BASIC statements DEFINT, DEFSTR, DEFSNG and DEFDBL
may be included in a program to declare the types for certain
variable names. These statements are described in detail in Section
2.10.

An array is a group or table of values referenced by the same
variable name. Each element in an array is referenced by an array
variable that is subscripted with an integer or an integer expression.
An array variable name has as many subscripts as there are
dimensions in the array. For example V(10) would reference a value
in a one-dimension array, T(1,4) would reference a value in a two-
dimension array, and so on. The maximum number of dimensions for
an array is 285. The maximum number of elements per dimension is
32767

VARIABLES: BYTES
Integer 2
Single-precision 4
Double-precision 8

ARRAYS: BYTES
Integer 2 per element
Single-precision 4 per element
Double-precision 8 per element

STRINGS:

3 bytes overhead plus the present contents of the string.

When necessary, MS-BASIC will convert a numeric constant from one
type to another. The following rules and examples should be kept in
mind.

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number will be
stored as the type declared in the variable name. (If a
string variable is set equal to a numeric value or vice
versa, a "Type mismatch” error occurs.)

Example: [eeeai =i nte s e S R e R AL i SR I e L i B

10 A% = R34
20 PRINT A%
RUN

R_3

2. During expression evaluation, all of the operands in an
arithmetic or relational operation are converted to the
same degree of precision, i.e., that of the most precise
operand. Also, the result of an arithmetic operation is
returned to this degree of precision.

Examples o o s o S ey P s T o el e e o 5 980 S

10 D# = 6#/7 The arithmetic was performed

20 PRINT D# in double precision and the

RUN result was returned in D#
B8571428571428587 1 as a double-precision value.

10 D = 6#/7 The arithmetic was performed

20 PRINT D in double precision and the

RUN result was returned to D (single
BB71429 precision variable), rounded and

printed as a single-precision value

3. Logical operators (see Section 1.8.3) convert their
operands to integers and return an integer result.
Operands must be in the range -32768 to 32767 or an
“Overflow’" error occurs.

4. When a floating point value is converted to an integer, the
fractional portion is rounded.

Exampiel o s s o S e Ca st o S ST SR P T R

10 C% = 55.88
20 PRINT C%
RUN

56

5. If a double-precision variable is assigned a single
precision value, only the first seven digits. rounded, of the
converted number will be valid. This is because only
seven digits of accuracy were supplied with the single-
precsion value. The absolute value of the difference
between the printed double-precision number and the
original single-precision value will be less than 6.3E-8
times the original single-precision value

E RS oo e e 6 e S T O N Sy O

10 A =204

RO B# = A

30 PRINT A; B#

RUN

R.04 2.039999961853087

e s LLEE
1.8 EXPRESSIONS An expression may be a string or numeric constant, or a variable, or
AND OPERATORS it may combine constants and variables with operators 1o produce a

single value.

Operators perform mathematical or logical operations on values. The
operators provided by MS-BASIC may be divided into four categories:

1. Arithmetic

2. Relational

1.8.1 ARITHMETIC
OPERATORS

3. Logical

4. Functional
L

The order of precedence of arithmetic operators is shown in Table
1-3:

Table 1-3: Precedence Order of Arithmetic Operators

SAMPLE
OPERATOR ~ OPERATION _ EXPRESSION
- Exponentiation XY
- Negation -X
o] Multiplication, floating XY
point division XY
+,- Addition, subtraction X+Y

Use parentheses to change the order in which the operations are
performed. Operations within parentheses are performed first. Inside
parentheses, the usual order of operations is maintained.

Here are some sample algebraic expressions and their MS-BASIC
counterparts

055 s P S R e S R e A S e S s T e s o T v
Table 1-4: Algebraic Expressions and Their MS-BASIC

Counterparts

ALGEBRAIC EXPRESSION MS-BASIC EXPRESSION

X+2Y X+Y*2
XN 17 X-Y/Z
X(Y/Z) XYIZ
X+Y
7 (X+Y)/Z
Ll (X"2)°Y
X% XAY*2)
X(-Y) X*(-Y)

NOTE: Two consecutive operators must be separated by parentheses.

P

1.8.1.1 Integer
Division and Modulus
Arithmetic

Example:

Example:

1.8.1.2 Overflow
and Division By Zero

1.8.2 RELATIONAL
OPERATORS

Two additional operators available in MS-BASIC are integer division
and modulus arithmetic.

Integer division is denoted by the backslash (%), ALT-+. The operands

are rounded to integers (must be in the range 32768 to 32767) before
the division is performed, and the quotient is truncated to an integer

B e]

10N =2
2568.699 =3

The precedence of integer division is just after that of multiplication
and floating point division

Modulus arithmetic is denoted by the operator MOD. It gives the
integer a value equal to the remainder of an integer division

Tt R 3 A T U P S T A e TR S i e e 6]

104 MOD 4 =2 (10/4=2 with a remainder 2)
2568 MOD 699 =5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer division.

If a division by zero is encountered during the evaluation of an
expression, the "Division by zero" error message is displayed,
machine infinity with the sign of the numerator is supplied as the
result of the division, and execution continues. If the evaluation of an
exponentiation results in zero being raised to a negative power, the
“Division by zero" error message is displayed, positive machine
infinity is supplied as the result of the exponentiation, and execution
continues.

If overflow occurs, the "Overflow’" error message is displayed,
machine infinity with the algebraically correct sign is supplied as the
result, and execution continues.

Relational operators are used to compare two values. The result of
the comparison is either “true” (-1) or “false” (0). This result may
then be used to make a decision regarding program flow. (See

IF, Section 2.25.)

T A S RS 1T e T T e S i M
Table 1-5: Relational Operators

_OPERATOR RELATION TESTED . _EXPRESSION
Equality xX=Y
<> Inequality K 5Y
< Less than XY
> Greater than X>Y
<= Less than or equal to X<=Y
>= Greater than or equal to X>=Y

Example:

Example:

1.8.3 LOGICAL
OPERATORS

10

NOTE: The equal sign is also used to assign a value to a variable,
See LET, Section 2.29

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first.

X+Y < (T1)/2

is true it the value of X plus Y is less than the value of T-1 divided
by Z.

IF SIN(X)<0 GOTO 1000
IF I MOD J < > 0 THEN K=K+1

Logical operators perform tests on multiple relations, bit manipulation,
or Boolean operations. The logical operator returns a bitwise result
which is either “true” (not zero) or “false” (zero). In an expression,
logical operations are performed after arithmetic and relational
operations. The outcome of a logical operation is determined as
shown in the following table. The operators are listed in order of
precedence

e Y T NS I PP o e el e M o ot T TR T P T e R S S0
Table 1-6: Outcomes of Logical Operations

NOT

X NOT X

1 0

0 1
AND

X Y X_AND Y

1 1 1

1 0 0

0 1 0

0 0 0
OR

X X XORY

1 1 1

1 0 1

0 1 1

0 0 0
XOR

X Y X XOR Y

1 1 Q

1 0 1

0 1 1

0 0 0

Example:

Example:

EQV

X Y X EQV Y
1 1 1
1 0 0
0 1 0
0 0 1
IMP
X Y X IMP Y
1 1 1
1 0 0
0 1 1
0 0 1

Just as the relational operators can be used to make decisions
regarding program flow, logical operators can connect two or more
relations and return a true or false value to be used in a decision
(see IF, Section 2.26).

17 PR T S s P (S I S e S I R PSS T R

IF D<200 AND F<4 THEN 80
IF I>>10 OR K<O THEN &0
IF NOT P THEN 100

Logical operators work by converting their operands to 16-bit, signed,
two's complement integers in the range -32768 to +32767. (If the
operands are not in this range, an error results.) If both operands are
supplied as 0 or -1, logical operators return O or -1. The given
operation is performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in the two
operands.

It is possible to use logical operators to test bytes for a particular bit
pattern. For instance, the AND operator may be used to “mask’ all
but one of the bits of a status byte at a machine |/O port. The OR
operator may be used to “merge” two bytes and create a particular
binary value. The following examples will help demonstrate how the
logical operators work.

i T e 5 OV T 52 S T, A e ey B30 2 (ST

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 AND 14=14 15 = binary 1111 and 14 = binary 1000,
so 15 AND 14 = 14 (binary 1110)

-1 AND 8=8 -1 = binary 1111111111111111 and 8 =
binary 1000, so -1 AND 8 = 8

4 OR 2=6 4 = pinary 100 and 2 = binary 10, so 4
OR 2 =6 (binary 110)

1

1.8.4 FUNCTIONAL
OPERATORS

1.8.5 STRING
OPERATIONS

12

Example:

Examples:

10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =
1010 (10)

-1 OR-2=-1 -1 = binary 1111111111111111 and -2 =
binary 1111111111111110, so -1 OR
-2 = -1. The bit complement of sixteen
zeros is sixteen ones, which is the two's
complement representation of -1.

NOT X=-(X+1) The two's complement of any integer is
the bit complement plus one.

A function is used in an expression 1o call a predetermined operation
that is to be performed on an operand. MS-BASIC has “intrinsic”
functions that reside in the system, such as SQR (square root) or SIN
(sine). All MS-BASIC intrinsic functions are described in Chapter 3.

MS-BASIC also allows “user defined" functions that are written by the
programmer. (See DEF FN, Section 29.)

Strings may be concatenated using +.

el R I o

10 A$="FILE" : B$="NAME"
20 PRINT A$ + B$
B0 PRINT “NEW "+ A$+ BS

FILENAME
NEW FILENAME

Strings may be compared using the same relational operators that are
used with numbers:

= > < > <= 5=

String comparisons are made by taking one character at a time from
each string and comparing the ASCIl cedes. If all the ASCIl codes
are the same, the strings are equal. If the ASCIl codes ditfer, the
lower code number precedes the higher. If, during string comparisan,
the end of one string is reached, the shorter string is said to be
smaller. Leading and trailing blanks are significant.

R T L A B S A Wk

G‘AA" < "AB"
“FILENAME" = “FILENAME"

GXET s AT

“aL” > “CL”

“eg' > “RGY

“SMYTH” < “SMYTHE"

B$ < “9/12/78" where B$ = “8/12/78"

7

(L RS, RO |
1.9 INPUT EDITING

T PR D
1.10 ERROR
MESSAGES

Thus, string comparisons can be used to test string values or to
alphabetize strings. All string constants used in comparison
expressions must be enclosed in quotation marks.

If an incorrect character is entered while typing a line, it can be
deleted with the BACKSPACE key or with ALT-H. Once a character(s)
has been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type ALT-U. A
carriage return is executed automatically after the line is deleted.

To correct program lines for a program that is currently in memory,
simply retype the line using the same line number. MS-BASIC will
automatically replace the old line with the new line.

Section 2.15 "EDIT" describes more sophisticated editing capabilities
provided in MS-BASIC.

To delete the entire program that is currently residing in memory,
enter the NEW command. (See Section 2.40.) NEW is usually used to
clear memary prior to entering a new program.

If MS-BASIC detects an error that causes program execution to halt,
an error message is printed. For a complete list of MS-BASIC error
codes and error messages, see Appendix G.

13

S T TR AT
2.1 AUTO

2. MS-BASIC COMMANDS AND STATEMENTS

All MS-BASIC commands and statements are described in this
chapter. Each description is formatted as follows:

FORMAT:

Shows the correct format for the instruction. See below for format
notation.

PURPOSE:

Tells what the instruction is used for.
REMARKS:

Describes in detail how the instruction is used.
EXAMPLE:

Shows sample programs or program segments that demonstrate the
use of the instruction

Wherever the format for a statement or command is given, the
following rules apply:

1. ltems in capital letters must be input as shown

2. Items in lower case letters enclosed in angle brackets (< =) are
to be supplied by the user.

3. ltems in square brackets ([]) are optional.

4. All punctuation except angle brackets and square brackets (i.e,
commas. parentheses, semiceolons, hyphens. equal signs) must be
included where shown.

5. Items followed by an ellipsis () may be repeated any number
of times (up to the length of the line)

FORMAT:

AUTO [<line number>[,<Increment>]]

PURPQSE

Generates a line number automatically after each carriage return.

15

22 CALL

16

REMARKS:

AUTO begins numbering at </ine number> and increments each
subsequent line number by <increment>, The default for both values
is 10. If <line number> is followed by a comma but <increment> is
not specified, the last increment specified in an AUTO command is
assumed.

It AUTO generates a line number that is already being used, an
asterisk is printed after the number to warn the user that any input
will replace the existing line. Typing a carriage return immediately
after the asterisk will save the line and generate the next line number.

AUTO is terminated by typing ALT-C. The line in which ALT-C is
command level.

EXAMPLE:

AUTO 100, 50 Generates line numbers 100, 150, 200 . . .

AUTO Generates line numbers 10, 20, 30, 40 . . .

FORMAT:
CALL <varlable name>[(<argument lisf>)]

variable name contains the segment offset that is the starting point in
memory of the subroutine being CALLed. Note that the variable name
must be assigned to the segment offset before the CALL statement is
issued (see example below).

argument list contains the variables or constants, separated by
commas, that are to be passed to the routine.

PURPOSE:
Calls an assembly language subroutine.

REMARKS:

The CALL statement is the recommended way of calling 8086
machine language programs with MS-BASIC. It is suggested that the
old style user-call USR(n) not be used. See Appendix E for
comparison of the two methods and for a complete description of
using the CALL statement for assembly language subroutines.

When a CALL statement is executed, control is transferred to the
user's routine via the segment address given in the last DEF SEG
statement and the segment offset specified by the <variable name>
portion of the CALL statement. Values are returned to MS-BASIC by
including the variable name which will receive the result in the
<argument list>.

2.3 CHAIN

The CALL statement conforms to the INTEL PL/M-86 calling
conventions outlined in Chapter 9 of the INTEL PL/M-86 Compiler
Qperator's Manual. MS-BASIC follows the rules described for the
MEDIUM case.

EXAMPLE:
100 DEF SEG=&HB8000

110 FOO=8H7FA
120 CALL FOO (AB$C)

Line 100 sets the segment address to 8000 Hex. The variable FOO is
set to &H7FA, so that the call to FOO will execute the subroutine at
location 8000:7FA Hex (absolute address B07FA Hex).

FORMAT:

CHAIN [MERGE] <fllename[,[<line number exp>]
[,ALL][,DELETE<range>]]

PURPOSE:

Calls a program and passes variables to it from the current program.
REMARKS:

<filename> is the name of the program that is called

EXAMPLE:

CHAIN"PROG1"

<line number exp> is a line number or an expression that evaluates
to a line number in the called program. It is the starting point for
execution of the called program. If it is omitted, execution begins at
the first line

EXAMPLE:

CHAIN“PROG1",1000

<line number exp>> is not affected by a RENUM command.

With the ALL option, every variable in the current program is passed
to the called program. If the ALL option is omitted, the current
program must contain a COMMON statement to list the variables that
are passed. (See Section 26.)

EXAMPLE:

CHAIN“PROG1",1000, ALL

17

TR R TV A RS
2.4 CLEAR

18

If the MERGE option is included, it allows a subroutine to be brought
into the MS-BASIC program as an overlay. That is, a MERGE
operation is performed with the current program and the called
program. The called program must be an ASCI file if it is to be
MERGEd.

EXAMPLE:
CHAIN MERGE"“OVRLAY",1000

After an overlay is brought in, it is usually desirable to delete it so
that a new overlay may be brought in. To do this, use the DELETE
option.

EXAMPLE:
CHAIN MERGE“OVRLAYR",1000, DELETE 1000-6000

The line numbers in <range> are affected by the RENUM command.

NQOTE: The CHAIN statement with MERGE option leaves the files
open and preserves the current OPTION BASE setting.

If the MERGE option is omitted, CHAIN won't preserve variable types
or user-defined functions for use by the chained program. Any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN statements
containing shared variables must be restated in the chained program.

The MS-BASIC compiler does not support the ALL, MERGE, DELETE,
and <f/ine number exp> options to CHAIN. Thus, the statement format
is CHAIN <filename>>. If you wish to maintain compatibility with the
MS-BASIC compiler, it is recommended that COMMON be used to
pass variables and that overlays not be used. The CHAIN statement
leaves the files open during CHAINIng.

When using the MERGE option, user-defined functions should be
placed before any CHAIN MERGE statements in the program
Otherwise, the user-defined functions will be undefined after the
merge is complete

FORMAT:

CLEAR [, [<expressionT>][,<expression2>]]

PURPOSE

Sets all numeric variables to zero, all string variables to null, and

closes all open files: and, optionally, sets the end of memory and the
amount of stack space

REMARKS

<expresston! > is a memory location which, if specified, sets the
highest location available for use by MS-BASIC

f \

2.5 CLOSE

<expression2>> sets aside stack space for MS-BASIC, The default is
256 bytes or one-eighth of the available memory, whichever is
smaller.
NOTE: MS-BASIC allocates string space dynamically. An "Out of string
space error" occurs only if there is no free memory left for MS-BASIC
to use.
The MS-BASIC Compiler supports the CLEAR statement with the
restriction that <expression! > and <expression2> must be integer
expressions. If a value of 0 is given for either expression, the
appropriate default is used. The default stack size is 256 bytes, and
the default top of memory is the current top of memory. The CLEAR
statement performs the following actions:
» Closes all files
» Clears all COMMON and user variables
» Resets the stack and string space
» Releases all disk buffers
EXAMPLES:

CLEAR

CLEAR 32768

CLEAR ,,2000

CLEAR ,32768,2000

FORMAT:

CLOSE[[#]<fle number>[[#]<file number . .. >]]
PURPOSE:

Concludes 1/0 to a disk file.

REMARKS:

<file number> is the number under which the file was OPENed. A
CLOSE with no arguments closes all open files.

The association between a particular file and file number ends upon
executing a CLOSE. The file may then be reOPENed using the same
or a different file number. Likewise, that file number may now be
reused to OPEN any file.

A CLOSE for a sequential output file writes the final buffer of output,

The END statement and the NEW command always CLOSEs all disk
files automatically, (STOP does not close disk files.)

19

2.6 COMMON

20

EXAMPLE:
See Appendix B, “MS-BASIC Disk 1/0."

FORMAT:

COMMON <list of variables™
PURPOSE:

Passes variables to a CHAINed program.
REMARKS:

The COMMON statement is used in conjunction with the CHAIN,
statement. COMMON statements may appear anywhere in a program,
though it is recommended that they appear at the beginning. The
same variable cannot appear in more than one COMMON statement.
Array variables are specified by appending "()" to the variable name.
If all variables are to be passed, use CHAIN with the ALL option and
omit the COMMON statement.

EXAMPLE:

100 COMMON ABCD()G$
110 CHAIN “PROG3",10

NOTE: The MS-BASIC Compiler supports a modified version of the
COMMON statement. The COMMON statement must appear in a
program before any executable statements. The current non-
executable statements are:

COMMON

DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM

OPTION BASE

REM

%INCLUDE

Arrays in COMMON must be declared in preceding DIM statements,

The standard form of the COMMON statement is referred to as blank
COMMON. FORTRAN style named COMMON areas are also
supported; however, the variables are not preserved across CHAINs.
The syntax for named COMMON is as follows:

COMMON <name> <list of variables™>

where <pame>> is 1 1o 6 alphanumeric characters starting with a
letter. This is useful for communicating with FORTRAN and assembly
language routines without having to explicitly pass parameters in the
CALL statement.

2.7 CONT

The blank COMMON size and order of variables must be the same in
the CHAINing and CHAINed-to programs. The best way 1o insure this
is to place all blank COMMON declarations in a single include file
and use the %INCLUDE statement in each program.

EXAMPLE:
MENU.BAS
10 %INCLUDE COMDEF
. 1000 CHAIN “PROG1"
PROG1.BAS
10 %INCLUDE COMDEF
. 2000 CHAIN “MENU"
COMDEF.BAS
100 DIM A(100),B$(200)
110 COMMON IJKA()
120 COMMON AB,()X Y2
FORMAT:
CONT
PURPOSE:

Continues program execution after an Alt-C has been typed, or a
STOP or END statement has been executed.

REMARKS:

Execution resumes at the point where the break occurred. If the
break occurred after a prompt from an INPUT statement, execution
continues with the reprinting of the prompt (? or prompt string).

CONT is usually used in conjunction with STOP for debugging. When
execution is stopped, intermediate values may be examined and
changed using direct mode statements. Execution may be resumed
with CONT or a direct mode GOTO, which resumes execution at a
specified line number. CONT may be used to continue execution after
an error.

CONT s invalid if the program has been edited during the break.
EXAMPLE:

10 Input A, B, C

20 K=A"2*5.3:L=8"31.26

30 STOP

40 M=C*K+100:Print M
RUN

21

2.8 DATA

22

?123
BREAK IN 30
Ok
Print L
30.7692
Ok
CONT
1159

FORMAT:
DATA <list of constanis>
PURPOSE:

Stores the numeric and string constants that are accessed by the
program's READ statement(s). (See READ, Section 2.53)

REMARKS:

DATA statements are nonexecutable and may be placed anywhere in
the program. A DATA statement may contain as many constants as
will fit on a line (separated by commas), and any number of DATA
statements may be used in a program. The READ statements access
the DATA statements in order (by line number) and the data
contained in the DATA statements may be thought of as one
continuous list of items, regardless of how many items are on a line
or where the lines are placed in the program.

<list of constants™ may contain numeric constants in any format, i.e.
fixed point, floating point or integer. (No numeric expressions are
allowed in the list.) String constants in DATA statements must be
surrounded by double guotation marks only if they contain commas,
colons or significant leading or trailing spaces. Otherwise, quotation
marks are not needed

The variable type (numeric or string) given in the READ statement
must agree with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the
RESTORE statement (Section 2.56).

EXAMPLES:

80 for I=1 TO 10

90 READ A(I)

100 NEXT I

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

2.9 DEF FN

This program segment READs the values from the DATA statements
into the array A. After execution, the value of A(1) will be 3.08, and so
on.

LIST
10 PRINT “CITY", “STATE", “ZIP"

20 READ C$.8$,2

30 DATA “DENVER,", COLORADO, 80211
40 PRINT C$,8%.2

OK

RUN

CITY STATE ZIP
DENVER, COLORADO 80211
Ok

This program READs string and numeric data from the DATA
statement in line 30.

FORMAT:

DEF FN<name>[(<parameter list>)]=<function definition>
PURPOSE;

Defines and names a function that is written by the user.
REMARKS:

<name>> must be a legal variable name. This name, preceded by FN,
becomes the name of the function. <parameter list> is comprised of
those variable names in the function definition that are to be replaced
when the function is called. The items in the list are separated by
commas. <function definitton> is an expression that performs the
operation of the function. It is limited to cne line. Variable names that
appear in this expression serve only to define the function; they do
not affect program variables that have the same name. A variable
name used in a function definition may or may not appear in the
parameter list. If it does, the value of the parameter is supplied when
the function is called. Otherwise, the current value of the variable is
used.

The variables in the parameter list represent — on a one-to-one basis
— the argument variables or values that will be given in the function
call

User-defined functions may be numeric or string. If a type is specified
in the function name, the value ot the expression is forced to that
type before it is returned to the calling statement. If a type is
specified in the function name and the argument type does not
match, a "Type mismatch" error accurs

A DEF FN statement must be executed before the function it defines
may be called. If a function is called before it has been defined, an
“Undefined user function” error occurs. DEF FN is illegal in the direct
mode

23

N AT ST
210
DEFINT/SNG/DBL/STR

2.11 DEF SEG

24

EXAMPLE:

410 DEF FNAB(X.Y)=X"3/Y"2
420 T=FNAB(L:)

Line 410 defines the function FNAB. The function is called in line 420.

FORMAT

DEF<iype> <range(s) of letters™
where <type> is INT, SNG, DBL, or STR.
PURPOSE:

Declares variable types as integer, single-precision, double-precision,
or string.

REMARKS:

A DEF<type> statement declares that the variable names beginning
with the letter(s) specified will be that type variable. However, a type
declaration character always takes precedence over a DEF<type>
statement in the typing of a variable.

If no type-declaration statements are encountered, MS-BASIC
assumes all variables without declaration characters are single-
precision variables.

EXAMPLES:

10 DEFDBL L-P All variables beginning with the letters
L. M, N, O, and P will be double-
precision variables.

10 DEFSTR A All variables beginning with the letter A
will be string variables.

10 DEFINT I-NW-Z All variable beginning with the letters |,
J, K, LM N W X Y, Z will be integer
variables.

FORMAT:

DEF SEG [-<address>]

where address is a valid numeric expression returning an unsigned
integer in the range 0 to 65535

2.12 DEF USR

PURPOSE:

Assigns the current segment address to be referenced by a
subsequent CALL (see Section 22), a USR function call, or a PEEK
or POKE statement.

REMARKS:

The address specified is saved for use as the segment required by
PEEK, POKE, and CALL statements.

Entry of any value outside the <address> range 0-65535 will result in
an “lllegal Function Call” error, and the previous value will be
retained.

If the <address> option is omitted, the segment 1o be used is set to
the MS-BASIC data segment (DS). This is the initial default value.

If the <address> option is given, it should be based on a 16-byte
boundary. For PEEK, POKE, or CALL statements, the value is shifted
left 4 bits (this is done by the microprocessor, not by MS-BASIC) to
form the code segment address for the subsequent call instruction.
BASIC-86 does not perform additional checking to assure that the
resultant segment address is valid.

DEF and SEG MUST be separated by a space. Otherwise, MS-BASIC
would interpret the statement DEFSEG=100 to mean, "assign the
value 100 to the variable DEFSEG.”

EXAMPLE:

10 DEF SEG=8 HB80O SET segment to Screen buffer
20 DEF SEG Restore segment to MS-BASIC DS
FORMAT:

DEF USR[<digit>]=<integer expression_-
PURPOSE:

Specifies the starting address of an assembly language subroutine.

REMARKS:

<digit> may be any digit from 0 to 9. The digit corresponds to the
number of the USR routine whose address is being specified. If
<digit> is omitted, DEF USRO is assumed. The value of <infeger
expression> is the starting address of the USR routine. (See
Appendix E, "Assembly Language Subroutines.”)

Any number of DEF USR statements may appear in a program to

redefine subroutine starting addresses, thus allowing access to as
many subroutines as necessary.

25

2.13 DELETE

214 DIM

26

EXAMPLE:

200 DEF USRO=24000
210 X=USRO (Y 2/2.89)

FORMAT:

DELETE[<line number>][-<line number:>]

PURPOSE

Deletes program lines.

REMARKS:

MS-BASIC always returns to command level after a DELETE is

executed. If </ine number> does not exist, an "lllegal function call”
Error occurs.

EXAMPLES

DELETE 40 Deletes line 40

DELETE 40-100 Deletes lines 40 through 100, inclusive
DELETE40 Deletes all lines up to and including line 40
FORMAT:

DIM <list of subscripted variables™>
PURPOSE.

Specifies the maximum values for array variable subscripts and
allocates storage accordingly.

REMARKS

If an array variable name is used without a DIM statement, the
maximum value of its subscript(s) is assumed to be 10. If a subscript
is used that is greater than the maximum specified, a "Subscript out
of range” error occurs. The minimum value for a subscript is always
0. unless otherwise specified with the OPTION BASE statement (see
Section 2 .45).

The DIM statement sets all the elements of the specified arrays to an
initial value of zero.

2.15 EDIT

EXAMPLE:

10 DIM A (20)
20 FOR I=0 TO 20
30 READ A (1)
40 NEXT I

FORMAT:

EDIT <llne number>

PURPOSE:

Enters Edit Mode at the specified line.

REMARKS:

In Edit Mode, it is possible to edit portions of a line without retyping
the entire line. Upon entering Edit Mode, MS-BASIC types the line
number of the line to be edited, and then types a space and waits for
an Edit Mode subcommand.

EDIT MODE SUBCOMMANDS

Edit Mode subcommands are used to move the cursor or to inser,
delete, replace, or search for text within a line. The subcommands are
not echoed. Most of the Edit Mode subcommands may be preceded

by an integer — causing the command to be executed that number of
times. When a preceding integer is not specified, it is assumed to be 1.

Edit Mode subcommands may be categorized according to the
following functions:

1. Moving the cursor

2. Inserting text

3. Deleting text

4. Finding text

5. Replacing text

6. Ending and restarting Edit Mode

NOTE: In the descriptions that follow, <.ch> represents any character,
<text> represents a string of characters of arbitrary length, [1]

represents an optional integer (the default is 1), and ESC represents
the Escape key.

27

28

1.

Moving the Cursor

Space: Use the space bar to move the cursor to the right.
[i]Space moves the cursor i spaces to the right. Characters are
printed as you space over them.

Backspace: In Edit Mode, the Backspace moves the cursor key
one space to the left each time it is pressed. Characters are
printed as you backspace over them.

Inserting Text

I I<text> inserts <text> at the current cursor position, The
inserted characters are printed on the terminal. To terminate
insertion, type Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing Escape
and then Carriage Return. During an Insert command, the
Backspace key on the terminal may be used to delete
characters to the left of the cursor for each character that
you backspace over. If an attempt is made to insert a
character that will make the line longer than 255 characters,
a bell (Alt-G) is typed and the character is not printed.

X The X subcommand is used tc extend the line, X moves the
cursor to the end of the line, goes into insert mode, and
allows insertion of text as if an Insert command had been
.gwén W’hen you.-are. hmsﬁqa a&;andmg the lines, type

{_Escape/on Cartiage Return) | |

Deleting Text

D [1ID deletes i characters to the right of the cursor. The
deleted characters are echoed between backslashes, and
the cursor is positioned to the right of the last character
deleted. If there are fewer than i characters to the right of
the cursor, iD deletes the remainder of the line

H H deletes all characters to the right of the cursor and
then automatically enters insert mode. H is useful for
replacing statements at the end of a line.

Finding Text

S The subcommand [i]S<ch>> searches for the ith occurrence
of <<ch>> and positions the cursor before it. The character at
the current cursor position is not included in the search. If
<ech> is not found, the cursor will stop at the end of the
line. All characters passed over during the search are
printed.

K The subcommand [i]K<ch>> is similar to [i]S<ch>, except
all the characters passed over in the search are deleted.
The cursor is positioned before <Zch>>, and the deleted
characters are enclosed in backslashes.

5. Replacing Text

C The subcommand C<.ch> changes the next character to
<ch>. If you wish to change the next i characters, use the
subcommand iC, followed by i characters. After the ith new
character is typed, change mode is exited and you will
return to Edit Mode.

6. Ending and Restarting Edit Mcde

<er> Typing Carriage Return prints the remainder of the line,
saves the changes you made and exits Edit Mode.

E The £ subcommand has the same effect as Carriage
Return, except the remainder of the line is not printed.

Q The Q subcommand returns to MS-BASIC command level,
without saving any of the changes that were made to the
line during Edit Mode.

L The L subcommand lists the remainder of the line (saving
any changes made so far) and repositions the cursor at the
beginning of the line, still in Edit Mode. L is usually used to
list the line when you first enter Edit Mode.

A The A subcommand lets you begin editing a line over again.
It restores the original line and repositions the cursor at the
beginning.

NOTE: If MS-BASIC receives an unrecognizable command or
illegal character while in Edit Mode, it prints a bell character
(Alt-G) and the command is ignored.

SYNTAX ERRORS

When a Syntax Error is encountered during execution of a program,
MS-BASIC automatically enters Edit Mode at the line that caused the
errar.

EXAMPLE:
10K =a3(4)
RUN
?8yntax error in 10
10

When you finish editing the line and type Carriage Return (or the E
subcommand), MS-BASIC reinserts the line, which causes all variable
values to be lost. To preserve the variable values for examination
first exit Edit Mode with the Q@ subcommand. MS-BASIC will return to
command level, and all variable values will be preserved.

29

2.16 END

2.17 ERASE

30

ALT-A

Type an Alt-A to enter Edit Mode on the line you are currently typing.
MS-BASIC responds with a carriage return, an exclamation point (1)
and a space. The cursor will be positioned at the first character in the
line. Proceed by typing an Edit Mode subcommand.

NOTE. Remember, if you have just entered a line and wish to go
back and edit it, the command "EDIT.” will enter Edit Mode at the
current line. (The line number symbal *." always refers to the
current line.)

FORMAT:
END
PURPOSE:

Terminates program execution, closes all files and returns to
command level.

REMARKS:
END statements may be placed anywhere in the program. Unlike the
STOP statement, END does not cause a BREAK message to be
printed. An END statement at the end of a program is optional.
MS-BASIC always returns 1o command level after an END is executed.
EXAMPLE:

520 IF K>1000 THEN END ELSE GOTO 20
FORMAT:
ERASE <list of array variables>
PURPOSE:
Eliminates arrays from a program.
REMARKS
Arrays may be redimensioned after they are ERASEd, or the
previously allocated array space in memory may be used for other
purpeses. If an attempt is made to redimension an array without first
ERASEIng it, a "Duplicate Definition” error occurs.

NOTE: The MS-BASIC compiler does not support ERASE

EXAMPLE

450 ERASE A, B
460 DIM B(99)

R RS S T
2.18 ERR AND ERL
VARIABLES

2.19 ERROR

When an error handling subroutine is entered, the variable ERR
contains the error code for the error, and the variable ERL contains
the number of the line in which the error was detected. The ERR and
ERL variables are usually used in IF. THEN statements to direct
program flow in the error trap routine.

If the statement that caused the error was a direct mode statement,
ERL will contain 65535, To test if an error occurred in a direct
statement, use IF 65535 = ERL THEN .. Otherwise, use:

IF ERR = error code THEN . ..
IF ERL = line number THEN . ..

If the line number is not on the right side of the relational operator, it
cannaot be renumbered by RENUM. Because ERL and ERR are
reserved variables, neither may appear to the left of the equal sign in
a LET (assignment) statement. The MS-BASIC error codes are listed
in Appendix A

FORMAT:
ERROR <Integer expression>
PURPOSE:

Simulates the occurrence of a MS-BASIC error; or allows error codes
to be defined by the user.

REMARKS:

The value of <integer expression™> must be greater than 0 and less
than 255, If the value of <integer expression> equals an error code
already in use by MS-BASIC (see Appendix G), the ERROR statement
will simulate the occurrence of that error, and the corresponding error
message will be printed. (See first example.)

To define your own error code, use a value that is greater than any
used by the MS-BASIC error codes. (It is preferable to use the highest
available values, so compatibility may be maintained when more error
codes are added to MS-BASIC) This user-defined error code may
then be conveniently handled in an error trap routine. (See second
example.)

If an ERROR statement specifies a code for which no error message
has been defined, MS-BASIC responds with the message “Unprintable
Error.” Execution of an ERROR statement for which there 1s no error

trap routine causes an error message to be printed and execution

to halt

EXAMPLES:
LIST
108 =10
20T =5

30 ERROR S + T

3

2.20 FIELD

32

String too long in 30
Or, in direct mode:

Ok

ERROR 15 {you type this line)
String too long (MS-BASIC types this line)
Ok

FORMAT:

FIELD[#]<flle number>,<fleld width> AS < siring varlable-...
PURPOSE:

Allocates space for variables in a random file buffer.

REMARKS:

A FIELD statement must be executed to get data out of a random
buffer after a GET or to enter data before a PUT.

<file number> is the number under which the file was OPENed.
<field width> is the number of characters to be allocated to <string
variable>. For example:

FIELD 1, 20 AS N$, 10 AS 1D$, 40 AS ADD$

allocates the first 20 positions (bytes) in the random file buffer to the
string variable N$, the next 10 positions to ID$, and the next 40
positions to ADD$. FIELD does NOT place any data in the random
file butfer. (See LSET/RSET and GET.)

The total number of bytes allocated in a FIELD statement must not
exceed the record length that was specified when the file was
OPENed. Otherwise, a “Field overflow” error occurs. (The detfault
record length is 128.)

Any number of FIELD statements may be executed for the same file,
and all FIELD statements that have been executed are in effect at the
same time

EXAMPLE

See Appendix B.

NOTE: Do not use a FIELDed variable name in an INPUT or LET
statement once a variable name is in random file buffer. If a

subsequent INPUT or LET statement with that variable name is
executed, the variable's pointer is moved to string space.

R T S R
221 FOR ... NEXT

FORMAT:

FOR <variable>=x TO y [STEP z]

NEXT [<variable>][,<variable> . ..]
where x, y and z are numeric expressions.
PURPOSE:

Allows a series of instructions to be performed in a loop a given
number of times

REMARKS:

<variable> is used as a counter. The first numeric expression (x) is
the initial value of the counter. The second numeric expression (y) is
the final value of the counter. The program lines following the FOR
statement are executed until the NEXT statement is encountered.
Then the counter is incremented by the amount specified by STEP. A
check is performed to see if the value of the counter is now greater
than the final value (y). If it is not greater, MS-BASIC branches back
to the statement after the FOR statement and the process is
repeated. If it is greater, execution continues with the statement
following the NEXT statement. This is a FOR.NEXT loop. If STEP is
not specified, the increment is assumed to be one. If STEP is
negative, the final value of the counier is set to be less than the initial
value. The counter is decremented each time through the loop, and
the loop is executed until the counter is less than the final value

The bedy of the loop is skipped if the initial value of the loop times
the sign of the step exceeds the final value times the sign of the step.

NESTED LOOPS

A FOR ... NEXT loop may be placed within the context of another
FOR ... NEXT loop. When loops are nested, each loop must have a
unique variable name as its counter. The NEXT statement for the
inside loop must appear before that for the outside loop. If nested
loops have the same end point, a single NEXT statement may be
used for all of them.

The variable(s) in the NEXT statement may be omitted, in which case
the NEXT statement will match the most recent FOR statement. If a
NEXT statement is encountered befcre its corresponding FOR
statement, a "NEXT without FOR" error message is issued and
execution is terminated

EXAMPLES:
10 X=10
20 FOR I=1 TO K STEP 2

30 PRINT I
40 K=K+10

33

222 GET

34

50 PRINT K
60 NEXT I
RUN

<0

30

40

50

60

SQowmur

10 J=0

R0 FOR I=1 TO J
30 PRINT I

40 NEXT 1

In this example, the loop does not execute because the initial value
of the loop exceeds the final value.

10 1=5

20 For I=1 TO I+5

30 PRINT I;

40 NEXT

RUN
123456717889 10
Ok

[n this example, the loop executes ten times. The final value for the
loop variable is always set before the initial value is set. (Note:
Previous versions of BASIC set the initial value of the loop variable
before setting the final value, ie., the above loop would have
executed six times.)

FORMAT

GET [#]<file number>[,<record number>]

PURPOSE

Reads a record from a random disk file inta a random buffer,
REMARKS

<file number> is the number under which the file was OPENed. If

<record number> is omitted, the next record (after the last GET) is
read into the buffer. The largest possible record number is 32767

EXAMPLE:
See Appendix B.

NOTE After a GET statement, INPUT# and LINE INPUT# may be
done to read characters from the random file buffer

TN IR E FiAS T
223 GOSUB ...
RETURN

[E et it
2.24 GOTO

FORMAT:
GOSUB <llne number>

RETURN
PURPOSE:
Branches to and returns frem a subroutine.
REMARKS:

<line number> is the first line of the subroutine. A subroutine may be
called any number of times in a program, and a subroutine may be
called from within another subroutine. Such nesting of subroutines is
limited only by available memory.

The RETURN statement(s) in a subroutine causes MS-BASIC to
branch back to the statement following the most recent GOSUB
statement. A subroutine may contain more than one RETURN
statement, if logic dictate a return at different points in the subroutine.
Subroutines may appear anywhere in the program, but it is
recommended that the subroutine be easily distinguishable from the
main program. Putting a STOP, END or GOTO statement before a
subroutine will direct program control around it, and prevents
inadvertent entry into the subroutine.

EXAMPLE:

10 GOSUB 40

20 PRINT “BACK FROM SUBROUTINE”
30 END

40 PRINT “SUBROUTINE”;
50 PRINT “ IN";

60 PRINT “ PROGRESS”

70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

FORMAT:
GOTO <line number>
PURPOSE:

Branches unconditionally out of the normal program sequence fo a
specified line number.

REMARKS:

If <line number> is an executable statement, that statement and
those following are executed. If it is a nonexecutable statement,

35

L=

2251F ... THEN[...
ELSE] AND IF . ..
GOTO

36

execution proceeds at the first executable statement encountered
after <line number>.

EXAMPLE
LIST
10 READ R
20 PRINT “R ="R,
30 A =3.14"R"2
40 PRINT “AREA ="A
50 GOTO 10
60 DATA 57,12
Ok
RUN
R=56 AREA = 7858
R="7 AREA = 153.86
R =12 AREA = 452.16
?0ut of DATA in 10
Ok
FORMATS:

IF <expression> THEN <statement(s)> | <line number>
[ELSE <statement(s)> | <line number>]
IF <expression> GOTO <line number>
[ELSE <statement(s)> | <line number>]

PURPOSE

Makes a decision regarding program flow based on the result
returned by an expression.

REMARKS:

If the result of <expression> is not zero, the THEN or GOTO clause
is executed. THEN may be followed by either a line number for
branching or one or more statements to be executed. GOTO is
always followed by a line number. If the result of <expression> is
zero, the THEN or GOTO clause is ignored and the ELSE clause, if
present, is executed. Execution continues with the next executable
statement. A comma is allowed before THEN.

NESTING OF IF STATEMENTS

IF ... THEN .. ELSE statements may be nested. Nesting is limited
only by the length of the line.

EXAMPLES

IF X>>Y THEN PRINT “GREATER" ELSE IF Y>X
THEN PRINT “LESS THAN" ELSE PRINT “EQUAL"

is a legal statement. If the statement does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with the
closest unmatched THEN.

R TS B
2.26 INPUT

IF A=B THEN IF B=C THEN PRINT “A=C"
ELSE PRINT “A<>C"

will not print "A<>C" when A<>B
If an IF ... THEN statement is followed by a line number in the direct
mode, an "Undefined line" error results unless a statement with the
same line number had previously been entered in the indirect mode.
NOTE: When using IF to test equality for a value that is the result of
a floating point computation, remember that the internal representation
of the value may not be exact. Therefore, the test should be against
the range over which the accuracy of the value may vary. For
example, to test a computed variable A against the value 1.0, use:

IF ABS (A-1.0)<1.0E6 THEN ...

This test returns true it the value of A is 1.0 with a relative error of
less than 1.0E-6.

200 IF 1 THEN GET#1, 1
This statement GETs record number | if | is not zero.

100 IF(I<<20)*(I>>10) THEN DB=1979-1:GOTO 300
110 PRINT “OUT OF RANGE"

In this example, a test determines if | is greater than 10 and less than
20. If I is in this range, DB is calculated and execution branches to
line 300. If | is not in this range, execution continues with line 1110.

R10 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$
This statement causes printed output to go either to the terminal or
the line printer, depending on the value of a variable (IOFLAG). If

IOFLAG is zero, output goes to the line printer, otherwise output goes
to the terminal.

FORMAT:

INPUT[;][<"“prompt string’>;]<list of variables™>

PURPOSE:

Allows input from the terminal during program execution.

REMARKS:

When an INPUT statement is encountered, program execution pauses
and a question mark is printed to indicate the program is waiting for

data. If <"prompt string'>> is included, the string is printed before the
question mark. The reguired data is then entered at the terminal.

37

s
2.27 INPUT #

38

A comma may be used instead of a semicolon after the prompt string
1o suppress the question mark. For example, the statement INPUT
“ENTER BIRTHDATE",B$ will print the prompt with no question mark.

If INPUT is immediately followed by a semicolon, then the carriage
return typed by the user to input data does not echo a carriage
return/line feed sequence.

The data that is entered is assigned to the variable(s) given in
<variable list> The number of data items supplied must be the same
as the number of variables in the list. Data items are separated by
commas.

The variable names in the list may be numeric or string variable
names (including subscripted variables). The type of each data item
that is input must agree with the type specified by the variable name.
(Strings input to an INPUT statement need not be surrounded by
quotation marks.)

Responding to INPUT with too many or too few items, or with the
wrong type of value (numeric instead of string, etc.) causes the
message "?Redo from start” to be printed. No assignment of input
values is made until an acceptable response is given.

Examples:
10 INPUT X
20 PRINT X “SQUARED IS8” X"2
30 END
RUN
?85 {The 5 was typed in by the user
in response to the question mark.)
5 SQUARED IS 25
Ok
LIST
10 P1=3.14
20 INPUT “WHAT IS THE RADIUS":R
30 A=PI"R"2
40 PRINT “THE AREA OF THE CIRCLE IS";A
50 PRINT
80 GOTO =20
Ok
RUN
WHAT IS THE RADIUS? 74 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.9464
WHAT IS THE RADIUS?
etc.
FORMAT:

INPUT#<flle number—,< varlable list>

228 KILL

PURPOSE:

Reads data items from a sequential disk file and assigns them to
program variables.

REMARKS:

<file number> is the number used when the file was OPENed for
input, <variable list> contains the variable names that will be
assigned to the items in the file. (The variable type must match the
type specified by the variable name.) With INPUT#, no question mark
is printed, as with INPUT.

The data items in the file should appear just as they would if data
were being typed in response to an INPUT statement. With numeric
values, leading spaces, carriage returns and line feeds are ignored.
The first character encountered that is not a space, carriage return or
line feed is assumed to be the start of a number. The number
terminates on a space, carriage return, line feed or comma.

If MS-BASIC is scanning the sequential data file for a string item,
leading spaces, carriage returns and line feeds are also ignored. The
first character encountered that is not a space, carriage return, or line
feed is assumed to be the start of a string item. If this first character
is a quotation mark ("), the string item will consist of all characters
read between the first quotation mark and the second. Thus, a quoted
string may not contain a quctation mark as a character. If the first
character of the string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma, carriage or line feed
(or after 255 characters have been read). If end of file is reached
when a numeric or string item is being INPUT, the item is terminated.

EXAMPLE:

See Appendix B.

FORMAT:

KILL <fllename>
PURPOSE:

Deletes a file from disk.
REMARKS:

It a KILL statement is given for a file that is currently OPEN, a "File
already open" error occurs.

KILL is used for all types of disk files: program files, random data files
and sequential data files.

EXAMPLE:
200 KILL “DATA 1"
(See Appendix B)

39

T
2.29 LET

2.30 LINE INPUT

40

FORMAT:
[LET] <varlable> = <expression>
PURPOSE:

Assigns the value of an expression to a variable.
REMARKS

Notice the word LET is optional, i.e., the equal sign is sufficient when
assigning an expression to a variable name.

EXAMPLE:

110 LET D=12

120 LET E=13°2

130 LET F=1R"4

140 LET SUM=D+E+F

ar

110 D=12

120 E=1R°R

130 F=12°4

140 SUM=D+E+F

FORMAT:
LINE INPUT[;][<"prompt string”;]1<string variable>

PURPOSE:

Inputs an entire line (up to 254 characters) to a string variable,
without the use of delimiters,

REMARKS:

The prompt string is a string literal that is printed at the terminal
before input is accepted. A question mark is not printed unless it is
part of the prompt string. All input from the end of the prompt to the
carriage return is assigned to <string variable>. However, if a line
feed/ carriage return sequence (this order only) is encountered, both
characters are echoed; but the carriage return is ignored, the line
feed is put into <string variable>, and data input continues,

If LINE INPUT is immediately followed by a semicolon, then the
carriage return typed by the user to end the input line does not echo
a carriage return/line feed sequence at the terminal.

2.31 LINE INPUT#

2.32 LIST

A LINE INPUT may be by-passed by typing ALT-C. MS-BASIC will
return to command level and type Ok. Typing CONT resumes
execution at the LINE INPUT.

EXAMPLE:

See Example, Section 2.31, LINE INPUT#.

FORMAT:
LINE INPUT#<flle number>,<string variable>
PURPOSE:

Reads an entire line (up to 254 characters), without delimiters, from a
sequential disk data file to a string variable.

REMARKS:

<file number> is the number under which the file was OPENed.
<string variable>> is the variable name to which the line will be
assigned. LINE INPUT# reads all characters in the sequential file up
to a carriage return. It then skips over the carriage return/line feed
sequence, and the next LINE INPUT# reads all characters up to the
next carriage return. (If a line feed/carriage return sequence is
encountered, it is preserved)

LINE INPUT# is especially useful if each line of a data file has been
broken into fields, or if a MS-BASIC program saved in ASCIl mode is
being read as data by another program.

EXAMPLE:
10 OPEN “0",1,"LIST"”
20 LINE INFUT “CUSTOMER INFORMATION? “;C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN “I",1,"LIST”
60 LINE INPUT #1, C§
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER, INFORMATION? LINDA JONES 2344
MEMPHIS
LINDA JONES 2344 MEMPHIS
Ok
FORMAT 1:

LIST [<line number>]
FORMAT 2

LIST [<line number>[-[<line number>]]]

41

2.33 LLIST

42

PURPOSE:

Lists all or part of the program currently in memory at the terminal
REMARKS:

MS-BASIC always returns to command level after a LIST is executed.
Format 1. If <line number> is omitted, the program is listed beginning
at the lowest line number. (Listing is terminated either by the end of
the program or by typing ALT-C.) If <line number> is included, only
the specified line will be listed.

Format 2: This format allows the following options:

1. If only the first number is specified, that line and all higher-
numbered lines are listed.

2. If only the second number is specified, all lines from the beginning
of the program through that line are listed.

3. If both numbers are specified, the entire range is listed.

EXAMPLE:

Format 1:
LIST Lists the program currently in memory.
LIST 500 Lists line 500.

Format 2:
LIST 150- Lists all lines from 150 to the end.

LIST -1000 Lists all lines from the lowest number
through 1000.

LIST 150-1000 Lists lines 150 through 1000, inclusive.

FORMAT:

LLIST [<line number>[-[<line number<]]]

PURPOSE:

Lists all or part of the program currently in memory at the line printer.
REMARKS:

LLIST assumes a 132-character wide printer.

MS-BASIC always returns to command level after an LLIST is
executed. The options for LLIST are the same as for LIST, Format 2.

e

P

2.34 LOAD

O R s T
2.35 LPRINT/LPRINT

USING

S T Y S I
2.36 LSET AND RSET

EXAMPLE:

See the examples for LIST, format 2.

FORMAT:

LOAD <filename>[,R]

PURPOSE

Loads a file from disk into memory.

REMARKS

<filename>> is the name that was used when the file was SAVEd. For
more information on file names and extensions see Appendix C if you
are CP/M-86 and Appendix D, if you are using MS-DOS.

LOAD closes all open files and deletes all variables and program
lines currently residing in memory before it loads the designated
program. However, if the "R" option is used with LOAD, the program
is RUN after it is LOADed, and all open data files are kept open.
Thus, LOAD with the "R" option may be used to chain several
programs (or segments of the same program). Information may be
passed between the programs using their disk data files.

EXAMPLE:

LOAD “STRTRK" R

FORMAT:

LPRINT [<ist of expressions>]

LPRINT USING <string exp>;<lIst of expressions>>
PURPOSE:

Prints data at the line printer.

REMARKS:

Same as PRINT and PRINT USING, except output goes to the line
printer. See Section 248 and Section 2.49,

LPRINT assumes a 132-character-wide printer.

FORMAT:
LSET <string varlable> - <string expression>

RSET <string variable> = <string expression_

43

2.37 MERGE

44

PURPOSE:

Moves data from memory to a random file buffer (in preparation for a
PUT statement).

REMARKS:

If <string expression> requires fewer bytes than were FIELDed to
<string variable>, LSET left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to pad the extra positions.)
If the string is too long for the field, characters are dropped from the
right. Numeric values must be converted to strings before they are
LSET or RSET. See the MKI$, MKS$, MKDS$ functions, Section 3.26.

Example:

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)

NOTE: LSET or RSET may also be used with a non-fielded string
variable 1o left-justify or right-justify a string in a given field. For
example, the program lines:

110 A$=SPACE$(20)
120 RSET A$=N$

right-justify the string N§ in a 20-character field. This can be very
handy for formatting printed output.

FORMAT:

MERGE <filename >

PURPOSE:

Merges a specified disk file into the program currently in memory.
REMARKS:

<filename>> is the name used when the file was SAVEd. (Your
operating system may append a default filename extension if one was
not supplied in the SAVE command. (See Appendix C if your
operating system is CP/M-86, or Appendix D if you're using MS-DOS.)
The file must have been SAVEd in ASCIl format. (If not, a “Bad file
maode’ error occurs.)

If any lines in the disk file have the same line numbers as lines in the
program in memery, the lines from the file on disk will replace the
corresponding lines in memory. (MERGEIng may be thought of as
“inserting”’ the program lines on disk into the program in memory.)

MS-BASIC always returns to command level after executing a MERGE
command.

EXAMPLE:
MERGE “NUMBRS"

2.38 MID$

2.39 NAME

FORMAT:

MID$(<string exp1>,n[,m])=<string exp2>

where n and m are integer expressions and <(string expl> and
<string exp2> are string expressions.

PURPOSE:

Replaces a portion of one string with another string

REMARKS:

The characters in <string expl>> beginning at position n, are
replaced by the characters in <string exp2>. The optional m refers to
the number of characters from <(string exp2> that will be used in the
replacement. If m is omitted, all of <string exp2>> is used. However,
the replacement of characters never goes beyond the original length
of <string exp1> regardless of whether m is omitted or included.

EXAMPLE:
10 A$="KANSAS CITY, MO"
20 MID$(A$,14)="KS"
30 PRINT A$

RUN
KANSAS CITY, K8

MID$ is also a function that returns a substring of a given string. See
Section 3.25.

FORMAT:

NAME <old fllename>> AS <new fllename>

PURPOSE:

Changes the name of a disk file.

REMARKS:

<old filename>> must exist and <new filename> must not exist,
otherwise an error will result. After a NAME command, the file exists
on the same disk, in the same area of disk space, with the new

name.

EXAMPLE:

Ok
NAME “ACCTS” AS “LEDGER”
Ok

In this example, the file that was formerly named ACCTS will now be
named LEDGER.

45

2.40 NEW

2.41 NULL

2.42 ON ERROR
GOTO

46

FORMAT:

NEW

PURPOSE:

Deletes the program currently in memory and clears all variables.
REMARKS:

NEW is entered at command level to clear memory before entering a

new program. MS-BASIC always returns to command level after a
NEW is executed.

FORMAT:

NULL <integer expression>

PURPOSE:

Sets the number of nulls to be printed at the end of each line.
REMARKS:

For 10-character-per-second tape punches, <integer expressicn=>
should be >=3. When tapes are not being punched, <integer
expression> should be 0 or 1 for Teletypes and Teletype-compatible
terminal screens, <<integer expression> should be 2 or 3 for 30 cps
hard copy printers. The default value is 0.

EXAMPLE:

Ok

NULL 2

Ok

100 INPUT X

R00 IF X<50 GOTO 800

Two null characters will be printed after each line.

FORMAT:
ON ERROR GOTO <line number>>
PURPOSE:

Enables error trapping and specifies the first line of the error handling
subroutine.

REMARKS:

Once error trapping has been enabled, all errors detected—including

R A S
243 ON ... GOSUB

AND ON ... GOTO

2.44 OPEN

direct mode errors (e.g., Syntax errors) —will cause a jump to the
specified error handling subroutine, If <line number> does not exist,
an “Undefined line" error results. To disable error trapping, execute an
ON ERROR GOTO 0. Subsequent errors will print an error message
and halt execution. An ON ERROR GOTO 0 statement that appears
in an error trapping subroutine causes MS-BASIC to stop and print the
error message for the error that caused the trap. It is recommended
that all error trapping subroutines execute an ON ERROR GOTO O if
an error is encountered for which there is no recovery action.

NOTE: If an error occurs during execution of an error handling
subroutine, the MS-BASIC error message is printed and execution
terminates. Error trapping does not occur within the error handling
subroutine.

EXAMPLE:

10 ON ERROR GOTO 1000

FORMAT:

ON <expression>> GOTO <list of line numbers>
ON <expression> GOSUB <list of llne numbers>

PURPOSE:

Branches to one of several specified line numbers, depending on the
value returned when an expression is evaluated.

REMARKS:

The value of <expression>> determines which line number in the list
will be used for branching. For example, if the value is three, the third
line number in the list will be the destination of the branch. (If the
value is a noninteger, the fractional portion is rounded.) In the
ON..GOSUB statement, each line number in the list must be the first
line number of a subroutine. If the value of <expression> is zero or
greater than the number of items in the list (but less than or egual to
255), MS-BASIC continues with the next executable statement. If the

value of <expression> is negative or greater than 255, an “Illegal
function call”" error occurs.

EXAMPLE:
100 ON L1 GOTO 150,300,320,390

FORMAT:
OPEN <mode=[#]<flle number>,<fllename,[<reclen>]
PURPOSE:

Allows |/0 to a disk file.

47

R R A S R
2.45 OPTION BASE

2.46 OUT

48

REMARKS: A disk file must be OPENed before any disk |/O operation
can be performed on that file. OPEN allocates a buffer for 1/0O 1o the
file and determines the access mode to be used with the buffer.

<mode>> is a string expression whose first character is one of the
following:

o} specifies sequential output mode
| specifies sequential input mode

R specifies random input/output mode

<file number> is an integer expression whose value is between one
and fifteen. The number is then associated with the file for as long as
it is OPEN and is used to refer other disk /0O statements to the file.

<filename> is a string expression containing a name that conforms to
your operating system's rules for disk filenames.

<reclen> is an integer expression which, if included, sets the record
length for random files. The default record length is 128 bytes.

NOTE: A file can be OPENed for seguential input or random access
on more than one file number at a time. A file may be OPENed for
output, however, on only one file number at a time.
EXAMPLE:

10 OPEN “I",2,"INVEN"

See also Appendix B

FORMAT:
OPTION BASE n
wherenis 1 or 0
PURPOSE
Declares the minimum value for array subscripts
REMARKS
The default base is 0. If the statement
OPTION BASE 1

is executed, the lowest value an array subscript may have is one

FORMAT

ouT I1J

2.47 POKE

2.48 PRINT

where | and J are integer expressions in the range 0 to 65535. | is a
machine port number, and J is the data to be transmitted.

PURPOSE:
Sends a byte to a machine output port.
REMARKS:

The integer expression | is the port number, and the integer
expression J is the data to be transmitted.

EXAMPLE:
100 OUT 12345225
In assembly language, this is equivalent to:

MOV DX 12345

MOV AL255
OUT DXAL
FORMAT:
POKE 1,J

where | and J are integer expressions
PURPOSE:

Writes a byte into a memory location
REMARKS:

The integer expression | is the address of the memory location to be
POKEd. The integer expression J is the data to be POKEd. J must be
in the range 0 to 255. | must be in the range 0 to 65536.

The complementary function to POKE is PEEK. The argument to
PEEK is an address from which a byte is to be read. See Section
328,

POKE and PEEK are useful for efficient data storage, loading
assembly language subroutines, and passing arguments and results to
and from assembly language subroutines.

EXAMPLE

10 POKE & H5AQ0, & HFF

FORMAT.
PRINT [<list of expressions>|
PURPOSE:

Qutputs data at the terminal.

49

50

) urscdled format. For exah

REMARKS:

If <list of expressions> is omitted, a blank line is printed. If <Jist of
expressions>> is included, the values of the expressions are printed at
the terminal. The expressions in the list may be numeric and/or string
expressions. (Strings must be enclosed in quotation marks.)

PRINT POSITIONS

The position of each printed item is determined by the punctuation
used to separate the items in the list. MS-BASIC divides the line into
print zones of 14 spaces each. In the list of expressions, a comma
causes the next value to be printed at the beginning of the next zone.
A semicolon causes the next value to be printed immediately after the
last value. Typing one or more spaces between expressions has the
same effect as typing a semicolon.

If a comma or a semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line, spacing
accordingly. If the list of expressions terminates without a comma or
a semicolon, a carriage return is printed at the end of the line. If the
printed line is longer than the terminal width, MS-BASIC goes to the
next physical line and continues printing.

Printed numbers are always followed by a space. Positive numbers
are preceded by a space. Negative numbers are preceded by a
minus sign. Single precision numbers that can be represented with 6
or fewer digits in the unscaled format no less accurately than they
can be represented in the scaled format, are output using the
iple,|1E-7 19 qutpUt &s DEOGO6! and 1E-8 is
output as 1E-08. Déuble precws’i‘m numbers that can be fepresented
with 16 or fewer digits in the unscaled format no less accurately than
they can be represented in the scaled format, are cutput using the
unscaled format. For example, 1D-16 is output as
.00000000000000001 and 1D-17 is output as 10-17. A guestion mark
may be used in place of the word PRINT in a PRINT statement.

Examples:

10 X=5
R0 PRINT X+5, X-8, X*(-8), X"
30 END
RUN
10 0] -R5 3125
Ok

In this example, the commas in the PRINT statement cause each
value to be printed at the beginning of the next print zone.

LIST

10 INPUT X

20 PRINT X “SQUARED IS"” X"R “AND";
30 PRINT X “CUBED IS” X3

40 PRINT

50 GOTO 10

Ok

b S
2.49 PRINT USING

RUN
?9
9 SQUARED I8 81 AND 9 CUBED IS 729

? 2l
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of line 20 causes both
PRINT statements to be printed on the same line, and line 40 causes
a blank line to be printed before the next prompt.

I100FORX =1TO5
R0 J=J+5
30 K=K+10
40 ?J;K;
50 NEXT X
Ok
RUN
5 10 10 20 15 30 20 40 28 50O
Ok

In this example, the semicolons in the PRINT statement cause each
value to be printed immediately after the preceding value. (Don't
forget, a number is always followed by a space and positive numbers
are preceded by a space.) In line 40, a question mark is used instead
of the word PRINT.

PRINT USING <string exp>>;<list of expressions>

Prints strings or numbers using a specified format
REMARKS AND EXAMPLES:

<Jist of expressions> is comprised of the string or numeric
expressions that are to printed, separated by semicolons. <siring
exp> Is a string literal (or variable) comprised of special formatting
characters. These formatting characters (see below) determine the
field and the format of the printed strings or numbers

STRING FIELDS

When PRINT USING is used to print strings, one of three formatting
characters may be used to format the string field:

Specifies that only the first character in the given
string is to be printed.

51

52

\n spaces" Specifies that 2+n characters from the string are to

be printed. If the backslashes are typed with no
spaces, two characters will be printed; with one
space, three characters will be printed, and so on. If
the string is longer than the field, the extra
characters are ignored. If the field is longer than the
string, the string will be left-justified in the field and
padded with spaces on the right.

EXAMPLE

10 A$="LOOK":B$="0UT"

30 PRINT USING “I";A$;B$

40 PRINT USBING “* \";A$;B§

50 PRINT USING “\ “A$,B§;"Il”
RUN

LO

LOOKOUT

LOOK ouT !

Specifies a variable length string field. When the field
is specified with "&" the string is output exactly as input.

EXAMPLE:

10 A$="LOOK":B$="0UT"
20 PRINT USING “I";A$:
30 PRINT USING “&";B$
RUN
LouT

NUMERIC FIELDS

When PRINT USING is used to print numbers, the following special
characters may be used to format the numeric field:

#

A number sign is used to represent each digit
position. Digit positions are always filled. If the
number to be printed has fewer digits than paositions
specified, the number will be right-justified (preceded
by spaces) in the field.

A decimal point may be inserted at any position in
the field. If the tormat string specifies that a digit is
to precede the decimal point. the digit will always be
printed (as 0 if necessary) Numbers are rounded as
necessary

PRINT USING “##.##",78
0.78

PRINT USING “### ##",087 654
987 65

PRINT USING “#### “,10.2,5.366.789,234
1020 830 66.79 0.R3

'

$$

'ts

In the last example, three spaces were inserted at
the end of the format string to separate the printed
values on the line.

A plus sign at the beginning or end of the format
string will cause the sign of the number (plus or
minus) to be printed before or after the number.

A minus sign at the end of the format field will cause
negative numbers to be printed with a trailing
minus sign.

PRINT USING “+##. ## “,-868.0524,556,-9
6895 +240 +5560 -0.90

PRINT USING “## ##- “,-68.95,22.449,7.01
68.95- 2245 7.0l1-

A double asterisk at the beginning of the format
string causes leading spaces in the numeric field
to be filled with asterisks. The ** also specifies
positions for two more digits.

PRINT USING “**#.# “;12.39,09,765.1
*124 *09 17651

A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted number.
The $$ specifies two more digit positions, one of
which is the dollar sign. The exponential format
cannot be used with $$. Negative numbers cannot
be used unless the minus sign trails to the right.

PRINT USING “$$### ##".456.78
$456.78

The **$ at the beginning of a format string combines
the effects of the above two symbols. Leading
spaces will be asterisk-filled and a dollar sign will be
printed before the number. **$ specifies three more
digit positions, one of which is the dollar sign.

PRINT USING “**§## ##".2 34
*¥¥$254

A comma that is to the left of the decimal point in a
formatting string causes a comma to be printed to
the left of every third digit to the left of the decimal
peint. A comma that is at the end of the format
string is printed as part of the string. A comma
specifies another digit position. The comma has no
effect if used with the exponential (—) format.

PRINT USING “#### ##".1234.5
1,234 .50

PRINT USING “#### ##.1234 .5
1234 .50,

53

2.50 PRINT# AND
PRINT# USING

54

minus sign.

PRINT USING “## ##”,"°""234 56
2.35E+0R

PRINT USING “.####°°"".".888888
B88B9E+06

PRINT USING “+.##°°""";123
+.12E+03

—_— An underscore in the format string causes the next
character to be output as a literal character.

PRINT USING “_ |####__ |",12.34
112.34!

The literal character itself may be an underscore by

placing "_" in the format string.

% If the number to be printed is larger than the
specitied numeric field, a percent sign is printed in
front of the number. If rounding causes the number
to exceed the field, a percent sign will be printed in

front of the rounded number.

PRINT USING “## ##",111.22
%111.22

PRINT USING “.##”,999
%1.00

If the number of digits specified exceeds 24, an

“lllegal function call” error will result.

FORMAT:

PRINT#<fllenumber>[USING<string exp>;]<list
of exps>

PURPOSE:
Writes data to a sequential disk file,

REMARKS:

<file number> is the number used when the file was OPENed for

Four carets (or up-arrows) may be placed after the
digit position characters to specify exponential
format. The four carets allow space for E+xx to be
printed. Any decimal point position may be specified.
The significant digits are left-justified, and the
exponent is adjusted. Unless a leading + or trailing +
or — is specified, one digit position will be used to
the left of the decimal point to print a space or a

output. <string exp>> is comprised of formatting characters as
described in Section 2.49, PRINT USING. The expressions in <l/ist of
expressions> are the numeric and/or string expressions that will be
written to the file.

PRINT# does not compress data on the disk. An image of the data is
written to the disk, just as it would be displayed on the terminal
screen with a PRINT statement. For this reason, care should be taken
to delimit the data on the disk, so that it will be input correctly from
the disk.

In the list of expressions, numeric expressions should be delimited by
semicolons,

EXAMPLE:
PRINT#1,A;B;,C.X;Y;Z

(If commas are used as delimiters, the extra blanks that are inserted
between print fields will also be written 1o disk.)

String expressions must be separated by semicolons in the list. To
format the string expressions correctly on the disk, use explicit
delimiters in the list ot expressions.

For example, let A$="CAMERA" and B$="93604-1", The statement
PRINT#1,A8;B$
would write CAMERA93604-1 to the disk. Because there are no
delimiters, this could not be input as two separate strings. To correct
the problem, insert explicit delimiters into the PRINT# statement as
follows
PRINT#1,A8;",";B$
The image written to disk is;

CAMERA 93604 -1

which can be read back into two string variables.

If the strings themselves contain commas, semicolons, significant
leading blanks, carriage returns, or line feeds, write them to disk
surrounded by explicit quotation marks, CHR$(34).

For example, let A$="CAMERA, AUTOMATIC" and B$=" 93604-1".
The statement

PRINT#1,A$;B$
would write the following image to disk

CAMERA, AUTOMATIC 93604-1

251 PUT

56

and the statement

INPUT#1 A$ B$
would input "CAMERA" to A$ and "AUTOMATIC 93604-1" to BS. To
separate these strings properly on the disk, write double guotes to the
disk image using CHR$(34). The statement

PRINT#1 CHR$(34);A$;CHR$(34);CHRS(34);B$;CHR$(34)
writes the following image to disk:

“"CAMERA, AUTOMATIC"" 93604-1"
and the statement

INPUT#1 A% B$
would input “CAMERA, AUTOMATIC" to A$ and " 93604-1" to BS

The PRINT# statement may also be used with the USING option to
control the format of the disk file.

EXAMPLE:
PRINT#1 USING"$$### ## " J KL

See Appendix B. See also WRITE#, Section 2.67.

FORMAT.
PUT [#]<file number>[,<record number>]

PURPOSE:

Writes a record from a random buffer to a random disk file.
REMARKS:

<file number> is the number under which the file was OPENed. If
<record number>> is omitted, the record will have the next available
record number (after the last PUT). The largest possible record
number is 32767 The smallest record number is 1.

EXAMPLE:

See Appendix B

NOTE: PRINT4, PRINT# USING, and WRITE4 may be used to put
characters in the random file buffer before a PUT statement.

With WRITE#, MS-BASIC pads the buffer with spaces up to the
carriage return. Any to read or write past the end of the buffer causes
a "Field overflow” error

2.52 RANDOMIZE

2.53 READ

FORMAT:

RANDOMIZE [<expression>]

PURPQOSE:
Reseeds the random number generator.
REMARKS:

If <expression™ is omitted, MS-BASIC suspends program execution
and asks for a value by printing:

Random Number Seed (-32768 to 32767)7

before executing RANDOMIZE.

If the random number generator is not reseeded, the RND function
returns the same sequence of random numbers each time the
program is RUN. To change the sequence of randem numbers every
time the program is RUN, place a RANDOMIZE statement at the
beginning of the program and change the argument with each RUN.

EXAMPLE:

10 RANDOMIZE
R0 FOR I=1 TO &
30 PRINT RND;
40 NEXT I
RUN
Random Number Seed (-3R768 to 32767)? 3 (user
types 3)
B8508 484668 586328 119426 .T09RR5
Ok
RUN
Random Number Seed (-32768 to 3R767)? 4 (user
types 4 for new sequence)
B03B06 162462 929364 292443 322921
Ok
RUN
Random Number Seed (-32768 to 3R767)? 3 (same
sequence as first RUN)
BB508 484668 586328 119426 709285
Ok

FORMAT:
READ <list of varlables
PURPOSE

Reads values from a DATA statement and assigns them to variables
(See DATA, Section 2.9)

57

2.54 REM

58

REMARKS:

A READ statement must always be used in conjunction with a DATA
statement. READ statements assign variables to DATA statement
values on a one-to-one basis. READ statement variables may be
numeric or string, and the values read must agree with the variable
types specified. If they do not agree, a “Syntax error” will result.

A single READ statement may access one or more DATA statements
(they will be accessed in order), or several READ statements may
access the same DATA statement. If the number of variables in </ist
of variables™> exceeds the number of elements in the DATA
statement(s), an OUT OF DATA message is printed. If the number of
variables specified is fewer than the number of elements in the DATA
statement(s), subsequent READ statements will begin reading data at
the first unread element. If there are no subsequent READ statements,
the extra data is ignored

To reread DATA staternents from the start, use the RESTORE
statement (see RESTORE, Section 2.56).

EXAMPLE:

80 FOR I=1 TO 10

90 READ A(1)

100 NEXT I

110 DATA 3.08,5.19,3.12,3.984.24
120 DATA 5.08,5.554.003.16,3.37

This program segment READs the values from the DATA statements
into the array A. After execution, the value of A(1) will be 3.08, and so
on.

EXAMPLE:

LIST

10 PRINT “CITY", “STATE", “ ZIP"

20 READ C$8872

30 DATA “DENVER,”, COLORADO, 80211
40 PRINT C$,S$2

Ok

RUN

CITY STATE ZIP
DENVER, COLORADOB0211
Ok

This program READs string and numeric data from the DATA
statement in line 30

FORMAT:

REM <remark>

2.55 RENUM

PURPOSE:
Allows explanatory remarks 1o be inserted in a program.
REMARKS:

REM statements are not executed but are output exactly as entered
when the program is listed.

REM statements may be branched into from a GOTO or GOSUB
statement. Execution will continue the first executable statement after
the REM statement.

Remarks may be added to the end of a line by preceding the remark
with a single quotation mark instead of :REM.

WARNING: Do not use this in a data statement as it would be
considered legal data.

EXAMPLE:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1 TO 20
140 SUM=SUM + V(1)

or.

120 FOR I=1 TO 20 ‘CALCULATE AVERAGE
VELOCITY

130 SUM=SUM+V(I)

140 NEXT I

FORMAT:

RENUM [[<new number>][,[<old number>][,<increment>]]]
PURPOSE

Renumbers program lines

REMARKS:

<new number> is the first line number to be used in the new
sequence. The default is 10. <old number> is the line in the current
program where renumbering is to begin. The default is the first line of

the program. <increment> is the increment to be used in the new
sequence. The default is 10

59

2.56 RESTORE

60

RENUM also changes all line number references following GOTO,
GOSUB, THEN, ON..GOTO, ON..GOSUB and ERL statements to
reflect the new line numbers. If a nonexistent line number appears
after one of these statements, the error message “Undefined line
XXXXX In yyyyy" is printed. The incorrect line number reference
(xxexx) is not changed by RENUM, but line number yyyyy may be
changed.

NOTE RENUM cannot be used to change the order of program lines
(for example, RENUM 1530 when the program has three lines
numbered 10, 20 and 30) or to create line numbers greater than
65528. An “lllegal function call” error will result.

Examples:

RENUM Renumbers the entire program.
The first new line number will
be 10. Lines will increment by
10

RENUM 300,50 Renumbers the entire program.
The first new line number will
be 300. Lines will increment by
50

RENUM 1000,90020 Renumbers the lines from 900
up so they start with line

number 1000 and increment
by 20.

FORMAT:
RESTORE [</ine number=>]
PURPOSE
Allows DATA statements to be reread from a specified line.
REMARKS
After a RESTORE statement is executed, the next READ statement
accesses the first item in the program'’s first DATA statement. If </ine
number> is specified, the next READ statement accesses the first
item in the specified DATA statement,
EXAMPLE:

10 READ ABC

20 RESTORE

30 READ DEF
40 DATA 57, 68, 79

2.57 RESUME

2.58 RUN

FORMATS:

RESUME

RESUME 0

RESUME NEXT
RESUME <line number>
PURPOSE:

Continues program execution after an error recovery procedure has
been performed.

REMARKS:

Any one of the four formats shown above may be used, depending
upon where execution is to resume:

RESUME Execution resumes at the

or statement which caused the

RESUME 0 error.

RESUME NEXT Execution resumes at the statement
immediately following the one which caused
the error.

RESUME <ine number=> Execution resumes at <line number>.

A RESUME statement that is not in an error trap routine causes a
“RESUME without error” message to be printed.

EXAMPLE:
10 ON ERROR GOTO 900
900 IF“ (ERR=R230)AND(ERL=90) THEN PRINT “TRY
AGAIN":RESUME 80

FORMAT 1:

RUN [<[line number>]

PURPOSE:

Executes the program currently in memaory.

REMARKS:

It <line number> is specified, execution begins on that line.

Otherwise, execution begins at the lowest line number. MS-BASIC
always returns to command level after a RUN is executed.

61

2.59 SAVE

62

EXAMPLE

RUN
FORMAT 2:
RUN <fltename>[,R]
PURPOSE:

Loads a file from disk into memory and runs it.

REMARKS:

<filename>> is the name used when the file was SAVEd. See
Appendix C for CP/M-86 and Appendix D for MS-DOS.

RUN closes all open files and deletes the current contents of memory
before loading the designated program. However, with the "R option,
all data files remain OPEN.

EXAMPLE:
RUN “NEWFIL" R
See Appendix B.

NOTE: The MS-BASIC Compiler supports the RUN and RUN <Jine
number> forms of the RUN statement, The MS-BASIC Compiler does
not support the "R™ option with RUN. If you want this feature, the
CHAIN statement should be used

FORMAT:

SAVE <fllename>[,A | ,P]
PURPOSE.

Saves a program file on disk.
REMARKS:

<filename> is a quoted string that conforms to your operating
system'’s requirements for filenames. Your operating system may
append a default filename extension if cne was not supplied in the
SAVE command. See Appendix C if you are using CP/M-86, or
Appendix D if your operating system is MS-DOS. If <filename>
already exists, the file will be written over.

Use the A option to save the file in ASCII format. Otherwise, MS-BASIC
saves the file in a compressed binary format. ASCII format takes

more space on the disk, but some disk access requires that files be

in ASCII format. For instance, the MERGE command requires and
ASCII format file, and some operating system commands such as
LIST may require an ASCII format file.

2,60 STOP

SR RSP RESIE S N E |
2.61 SWAP

Use the P option to protect the file by saving it in an encoded binary
format. When a protected file is later RUN (or LOADed), any attempt
to list or edit it will fail.

Examples:
SAVE"COMR" A

SAVE"PROG" P

See also Appendix B, "MS-BASIC Disk /0"

FORMAT:

STOP

PURPOSE

Terminates program execution and returns to command level.
REMARKS:

STOP statements may be used anywhere in a program to
terminate execution. When a STOP is encountered, the following
message is printed

Break in line nnnnn

Unlike the END statement, the STOP statement does not close files.

MS-BASIC always returns to command level after a STOP is executed.
Execution is resumed by issuing a CONT command (see Section 2.7).

EXAMPLE:

10 INPUT ABC
20 K=A"2*5.3:1L=B"3/26
30 STOP
40 M=C*K+100:PRINT M
RUN
?1R3
BREAK IN 30
Ok
PRINT L
30.7692
Ok
CONT
1159
Ok

FORMAT

SWAP < varlable>,<varlable

63

PURPOSE:
Exchanges the values of two variables.
REMARKS:

Any type variable may be SWAPped (integer, single precision, double
precision, string), but the two variables must be of the same type or a
“Type mismatch™ error results.

EXAMPLE:

LIST

10 A$=" ONE " : B§=" ALL " : C$="FOR"
20 PRINT A$ C$ B$

30 SWAP A$, B$

40 PRINT A$ C$ B$

RUN
Ok
ONE FOR ALL
ALL FOR ONE
Ok
B e]
2.62 TRON/TROFF FORMAT:
TRON
TROFF
PURPOSE:

Traces the execution of program statements.
REMARKS:

As an aid in debugging, the TRON statement (executed in either the
direct or indirect mode) enables a trace flag that prints each line
number of the program as it is executed. The numbers appear
enclosed in square brackets. The trace flag is disabled with the
TROFF statement (or when a NEW command is executed).

EXAMPLE:

TRON

Ok

LIST

10 K=10

20 FOR J=1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+10

60 NEXT

70 END

Ok

RUN

64

2.63 WAIT

TSRS | 575
2.64 WHILE . ..
WEND

[10](20](30][40] 1 10 R0
[50][60][30][40] 2 R0 30
[80][80][70]

Ok

TROFF

Ok

FORMAT:

WAIT <port number>, I[,J]

where | and J are integer expressions
PURPOSE:

Suspends program execution while monitoring the status of a
machine input port.

REMARKS

The WAIT statement causes execution to be suspended until a
specified machine input port develops a specified bit pattern. The
data read at the port is exclusive ORed with the integer expression J,
and then ANDed with 1. If the result is zero, MS-BASIC loops back and
reads the data at the port again. If the result is nonzero, execution
continues with the next statement. If J is omitted, it is assumed to be
zero.

CAUTION: It is possible to enter an infinite loop with the WAIT

statement, in which case it will be necessary to manually restart the
machine

EXAMPLE:

100 WAIT 322

FORMAT:

WHILE <expression>
[<Io.op statementis>]
WEND

PURPOSE:

Executes a series of statements in a loop as long as a given
condition is true

65

2.65 WIDTH

66

REMARKS:

If <expression> is not zero (i.e., true), <loop statements>> are
executed until the WEND statement is encountered. MS-BASIC then
returns to the WHILE statement and checks <expression=. If it is still
true, the process is repeated. If it is not true, execution resumes with
the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will
match the most recent WHILE. An unmatched WHILE statement
causes a "WHILE without WEND" error, and an unmatched WEND
statement causes a "WEND without WHILE" error.

EXAMPLE:

90 ‘BUBBLE SORT ARRAY A$

100 FLIPS=1 ‘FORCE ONE PASS THRU LOOP

110 WHILE FLIPS

115 FLIPS=0

120 FOR I=1 TO J-1

130 IF A$(1)>A$(1+1) THEN
SWAP A$(D),
A$(1+1):FLIPS=1

140 NEXT I

150 WEND

FORMAT:
WIDTH [LPRINT] <Integer expression=
PURPOSE:

Sets the printed line width (in number of characters) for the terminal
or line printer.

REMARKS:

If the LPRINT option is omitted, the line width is set at the terminal. If
LPRINT is included, the line width is set at the line printer. <integer
expression> must have a value in the range 15 to 255. The default
width is 72 characters

If <integer expression> is 255, the line width is “infinite:" that is,
MS-BASIC never inserts a carriage return. However, the position of the
cursor or the print head, as given by the POS or LPOS function,
returns to zero after position 255.

EXAMPLE:

10 PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ"
RUN

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Ok

WIDTH 18

Ok

2.66 WRITE

2.67 WRITE#

RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ

Ok

FORMAT

WRITE[</Ist of expressions™]
PURPOSE

Qutputs data at the terminal.
REMARKS:

If <list of expressions> is omitted, a blank line is output. If <list of
expressions> is included, the values of the expressions are output at
the terminal. The expressions in list may be numeric and/or string
expressions, and they must be separated by commas.

When the printed items are output, each item will be separated from
the last by a comma. Printed strings will be delimited by quotation
marks. After the last item in the list is printed, MS-BASIC inserts a
carriage return/line feed.

WRITE outputs numeric values using the same format as the PRINT
statement, Section 2.48.

EXAMPLE:
10 A=80:B=90:C$="THAT'S ALL"
20 WRITE ABC$
RUN
80, 90,“THAT'S ALL"
Ok
FORMAT:

WRITE#<file number>,<list of expressions™
PURPOSE

Writes data to a sequential file.

REMARKS:

<file number > is the number under which the file was OPENed in
"Q" mode. The expressions in the list are string or numeric
expressions. and they must be separated by commas.

The difference between WRITE# and PRINT# is that WRITE# inserts
commas between the the items as they are written to disk and
delimits strings with quotation marks. Therefore, it is not necessary for
the user to put explicit delimiters in the list. A carriage return/line
feed sequence is inserted after the last item in the list Is written to
disk

67

68

EXAMPLE:

Let A$="CAMERA" and B$="93604-1", The statement:
WRITE#1,A$,B$

writes the following image to disk:
"CAMERA" "93604-1"

A subsequent INPUTH statement, such as
INPUT#1,A%$ B$

would input "CAMERA™ to A$ and "93604-1" to BS.

3.1 ABS

3.2 ASC

3. MS-BASIC FUNCTIONS

This chapter discusses the intrinsic functions provided by MS-BASIC
are presented in this chapter. The functions may be called from any
program without further definition.

Arguments to functions are always enclosed in parentheses. In the
formats given for the functions in this chapter, the arguments have
been abbreviated as follows:

Xand Y Represent any numeric expressions
| and J Represent integer expressions
X% and Y$ Represent string expressions

If a floating point value is supplied where an integer is required,
MS-BASIC will round the fractional portion and use the resulting
integer.
NOTE: With the MS-BASIC interpreter, only integer and single
precision results are returned by the functions described in this
chapter. Double precision functions are supported only by the
MS-BASIC Compiler.
FORMAT:
ABS(X)
ACTION
Returns the absolute value of the expression X.
EXAMPLE:

PRINT ABS(7*(-B))

35

Ok
FORMAT:
ASC(X$)
ACTION:

Returns a numerical value that is the ASCIl code of the first character

69

3.3 ATN

3.4 CDBL

3.5 CHRS$

70

of the string X$. (See Appendix D for ASCIl codes.) If X$ is null, an
“lllegal function call” error is returned

EXAMPLE:
10 X$ = “TEST"
R0 PRINT ASC(X$)
RUN
84
Ok

See the CHR$ function for ASCII-to-string conversion.

FORMAT:

ATN(X)

ACTION:

Returns the arctangent of X in radians. Result is in the range -pi/2 to

pi/2. The expression X may be any numeric type, but the evaluation
of ATN is always performed in single precision

EXAMPLE:
10 INPUT X
20 PRINT ATN(X)
RUN
?3
1.249046
Ok
FORMAT
CDBL(X)
ACTION

Converts X to a double precision number

EXAMPLE:
10 A = 45467
20 PRINT A;CDBL(A)
RUN
454 67 454.6699829101563
Ok
FORMAT
CHRS$(I)

3.6 CINT

3.7 COs

ACTION:
Returns a string whose one element has ASCII code |. (ASCIl codes
are listed in Appendix D.) CHR$ is commonly used to send a special
character to the terminal. For instance, the BEL character could be
sent (CHR$(7)) as a preface to an error message, or a form feed
could be sent (CHR$(12)) to clear a terminal screen and return the
cursor to the home position.
EXAMPLE:

PRINT CHR$(66)

B

Ok

See the ASC function for ASCII-to-numeric conversion.

FORMAT:
CINT(X)
ACTION:

Converts X to an integer by rounding the fractional portion. If X is not
in the range -32768 to 32767, an "Overflow" error occurs

EXAMPLE

PRINT CINT(45.67)
46
Ok

See the CDBL and CSNG functions for converting numbers to the

double precision and single precision data type. See also the FIX and
INT functions, both of which return integers.

FORMAT:
COS(X)
ACTION:

Returns the cosine of X in radians. The calculation of COS(X) is
performed in single precision.

EXAMPLE:

10 X = 8*COB(4)
20 PRINT X
RUN

1.842122
Ok

3.8 CSNG

R R TS S S
3.9 CvI, CVS, CVD

3.10 DATES$

72

FORMAT:
CSNG(X)
ACTION:
Converts X to a single precision number
EXAMPLE
10 A# = 975.34_217#
20 PRINT A#; CSNG(A#)
RUN
975.34217 975.341
Ok

See the CINT and CDBL functions for converting numbers to the
integer and double precision data types.

FORMAT:

CVI(<2-byte string™)

CVS(<4-byte string>)

CVD(<8-byte string™)

ACTION:

Converts string values to numeric values. Numeric values that are
read in from a random disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to an integer. CVS
converts a 4-byte string to a single precision number, CVD converts

an 8-byte string to a double precision number.

EXAMPLE:

70 FIELD #1 4 AS N§,
12 AS B, . ..

80 GET #1

90 Y=CVS(N$)

See also Appendix B.

FORMAT:

DATES$

3.11 EOF

3.12 EXP

ACTION:

Sets or retrieves the current date. Returns a ten-character string
variable with the following format:

mm-dd-yyyy

where: mm
dd

Yyyy

month (1-12)
date (1-31)
year (1980-99)
= delimiter
delimiter

/

Leading zeros are presumed for single-digit months and dates.
Double-digit years are presumed to begin with 19, so that specify-
ing 99 indicates the year 1999. DATES$ can be used like any string
variable, although it is constantly being incremented by a hardware
clock. Note that either of the common delimiters “/" or “-" can be
used between digits.

NOTE: DATE$ does not support the European format dd-mm-yy.
EXAMPLE:

DATES = “10-21-82"

Ok

PRINT DATES

10-21-1982
Ok

FORMAT:
EOF(<flle number>)
ACTION:
Returns -1 (true) if the end of a sequential file has been reached. Use
EOF to test for end-of-file while INPUTting, to avoid “Input past end”
errors.
EXAMPLE:
10 OPEN “I",1,DATA"
20 C=0
30 IF EOF(1) THEN 100

40 INPUT #1M(C)
50 C=C+1:GOTO 30

FORMAT:
EXP(X)
ACTION

73

3.13 FIX

3.14 FRE

74

Returns e to the power of X. X must be <=87.3365. If EXP overflows,
the “Overflow” error message is displayed, machine infinity with the
appropriate sign is supplied as the result, and execution continues.

EXAMPLE:
10X =8
20 PRINT EXP (X-1)
RUN
54.5982
Ok
FORMAT:
FIX(X)
ACTION:

Returns the truncated integer part of X. FIX(X) is equivalent to
SGN(X)' INT(ABS(X)). The major difference between FIX and INT is
that FIX does not return the next lower number for negative X.

EXAMPLES:
PRINT FIX(58.75)
58
Ok
PRINT FIX(-58.75)

-68
Ok

FORMAT:
FRE(0)
FRE(X$)
ACTION:

Arguments to FRE are dummy arguments. FRE returns the number of
bytes in memory not being used by MS-BASIC.

FRE("") forces a garbage collection before returning the number of
free bytes. BE PATIENT: garbage collection may take 1 to 1-1/2
minutes. MS-BASIC will not initiate garbage collection until all free
memory has been used up. Therefore, using FRE("") periodically will
result in shorter delays for each garbage collection,

EXAMPLE:
PRINT FRE(O)

14542
Ok

3.15 HEX$

3.16 INKEY$

3.17 INP

FORMAT:
HEX$(X)
ACTION:

Returns a string which represents the hexadecimal value of the
decimal argument. X is rounded to an integer before HEX$(X) is
evaluated.

EXAMPLE:

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X “DECIMAL IS " A$ “ HEXADECIMAL"
RUN
2 32

32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCTS$ function for octal conversion.

FORMAT:

INKEY$

ACTION:

Returns either a one-character string containing a character read
from the terminal or a null string if no character is pending at the
terminal. No characters will be echoed and all characters are passed
through to the program except for ALT-C, which terminates the

program. (With the MS-BASIC Compiler, ALT-C is also passed through
to the program.)

EXAMPLE:
1000 'TIMED INPUT SUBROUTINE
1010 RESPONSE$=""
1020 FOR I1%=1 TO TIMELIMIT%
1030 A$=INKEY$: IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=0 : RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT I%
1070 TIMEOUT%=1 : RETURN
FORMAT:
INP(I)
where | is a valid machine port number in the range 0 to 65535.
ACTION:

Returns the byte read from port |.

75

3.18 INPUTS

3.19 INSTR

76

REMARKS:
INP is the complementary function to the OUT statement.
EXAMPLE:
100 A=INP (54321)
In assembly language, this is equivalent 1o

MOV DX.54321
IN AL,DX

FORMAT:
INPUTS$(X[,[#]Y])
ACTION

Returns a string of X characters, read from the terminal or from file
number Y. If the terminal is used for input, no characters will be
echoed and all ALT characters are passed through except ALT-C,
which is used to interrupt the execution of the INPUT$ function

Example

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL

10 OPEN"I",1,“DATA"

20 IF EOF(1) THEN 50

30 PRINT HEX$(ASC(INFUT$(1,#1)));

40 GOTO 20

50 PRINT

60 END

100 PRINT “TYPE P TO PROCEED OR S TO STOP”
110 X$=INPUT$(1)

120 IF X$="P" THEN 500

130 IF X$="8" THEN 700 ELSE 100

FORMAT
INSTR([1,]X$,Y$)
ACTION

Searches for the first occurrence of string Y$ in X$ and returns the
position at which the match is found. Optional offset | sets the

3.20 INT

3.21 LEFTS

position for starting the search. | must be in the range 1 to 255. If
|I=LEN(X$) or if X$ is null or if ¥Y$ cannot be found, INSTR
returns 0. If Y$ is null, INSTR returns | or 1. X$ and Y$ may be
string variables, string expressions or string literals.

EXAMPLE:
10 X$ = “ABCDEB"
20 Y$ = “B”
30 PRINT INSTR({X$ Y$);INSTR(4 X$Y$)
RUN
2 6
Ok

NOTE: If I=0 is specified, error message “lllegal function call in <line
number>" will be returned.
FORMAT:
INT(X)
ACTION:
Returns the largest integer <=X.
Examples:

PRINT INT(99.89)

99
Ok
PRINT INT(-12.11)

-13
Ok

See the FIX and CINT functions which also return integer values.

FORMAT:
LEFTS$(X$.1)
ACTION:
Returns a string comprised of the leftmost | characters of X§. | must
be in the range 0 to 255. If | is greater than LEN(X$), the entire string
(X$) will be returned. If 1=0, the null string (length zero) is returned.
EXAMPLE:

10 A$ = “BASIC PROGRAM”

20 B$ = LEFT$(A$5)

30 PRINT B$

BASIC

Ok

Also see the MID$ and RIGHTS functions

77

3.22 LEN

3.23 LOC

3.24 LOG

3.25 LPOS

78

FORMAT
LEN(X$)
ACTION:

Returns the number of characters in X$ Nonprinting characters and
blanks are counted.

EXAMPLE
10 X$ = “PORTLAND, OREGON"
20 PRINT LEN(X$)
18
Ok
FORMAT:

LOC(<flle number>)

ACTION:

With random disk files, LOC returns the record number just read or
written from a GET or PUT. If the file was opened but no disk |/0O
has been performed yet, LOC returns a 0. With sequential files, LOC
returns the number of sectors (128 byte blocks) read from or written
to the file since it was OPENed.

EXAMPLE

200 IF LOC(1)>60 THEN STOP
FORMAT:

LOG(X)
ACTION:

Returns the natural logarithm of X. X must be greater than zero.

EXAMPLE:
PRINT LOG(45/7)
1.880752
Ok
FORMAT:
LPOS(X)
ACTION:

Returns the current position of the line printer print head within the
line printer buffer. Does not necessarily give the physical position of
the print head. X is a dummy argument.

—

3.26 MIDS

T T A AN 5
3.27 MKI$, MKSS,

MKD$

EXAMPLE:
100 IF LPOS(X)>60 THEN LPRINT CHR$(13)
FORMAT:
MID$(XS$,I[,J])
ACTION;

Returns a string of length J characters from X$ beginning with the Ith
character, | and J must be in the range 1 to 255. If J is omitted or if
there are fewer than J characters to the right of the Ith character, all
rightmost characters beginning with the Ith character are returned. If
| >rLEN(x$), MID$ returns a null string.

EXAMPLE

LIST

10 A$="GOOD "

20 B$=“MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$9,7)

Ok

RUN

GOOD EVENING

Ok

Also see the LEFT$ and RIGHT$ functions

NOTE: If 1=0 is specified, error message "ILLEGAL FUNCTION CALL
IN <line number>" will be returned.

FORMAT

MKI$(<Integer expression=)

MKS$(<single-precision expression=)

MKD$(< double-precision expression)

ACTION

Convert numeric values to string values. Any numeric value that is
placed in a random file buffer with an LSET or RSET statement must
be converted to a string. MKI$ converts an integer to a 2-byte string
MKS$ converts a single precision number to a 4-byte string. MKD$
converts a double precision number to an 8-byte string

EXAMPLE:
90 AMT=(EK+T)
100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ = MKS$(AMT)

120 LSET N$ = A$
130 PUT #1

See also Appendix B.

79

S R

3.28 OCTS FORMAT.
OCT$(X)
ACTION:

Returns a string which represents the octal value of the decimal
argument. X is rounded to an integer before OCT$(X) is evaluated.

EXAMPLE:
PRINT OCT$(24)
30
Ok

See the HEX$ function for hexadecimal conversion.

R R

3.29 PEEK FORMAT:
PEEK(l)
ACTION:

Returns the byte (decimal integer in the range 0 to 255) read from
memory location [. | must be in the range 0 to 65536. PEEK is the
complementary function to the POKE statement, Section 2.47.
EXAMPLE:

A=PEEK(&HS5A00)

TSRS A A

3.30 POS FORMAT
POS(I)
ACTION

Returns the current cursor position. The leftmost position is 1. X is a
dummy argument.

EXAMPLE:
IF POS(X)>60 THEN PRINT CHR$(13)

Also see the LPOS function.

3.31 RIGHTS FORMAT
RIGHT$(X$,1)

80

ACTION:

Returns the rightmast | characters of string X$. If I=LEN(X$), returns
X$. If 1=0, the null string (length zero) is returned.

EXAMPLE

10 A$="DISK BASIC"

20 PRINT RIGHT$(A$8)
RUN

BASIC

Ok

Also see the MID$ and LEFT$ functions.

e T

3.32 RND FORMAT:
RND[(X)]
ACTION:

Returns a random number between 0 and 1. The same sequence of
random numbers is generated each time the program is RUN unless
the random number generator is reseeded (see RANDOMIZE, Section
2.52). However, ¥<0 always restarts the same sequence for any given
X.

X>>0 or X omitted generates the next random number in the
sequence. X=0 repeats the last number generated.

EXAMPLE:
10 FOR I=1 TO &
20 PRINT INT(RND*100);
30 NEXT I

Will print 5 random numbers between 0 and 100.

ST R

3.33 SGN FORMAT:
SGN(X)
ACTION:

If X>>0, SGN(X) returns 1. If X=0, SGN(X) returns 0. If X<0,
SGN(X) returns -1.

EXAMPLE:
ON 8GN(X)+2 GOTO 100,200,300

branches to 100 if X is negative, 200 if X is 0 and 300 if X is positive.

81

3.34 SIN

3.35 SPACES

3.36 SPC

82

FORMAT
SIN(X)
ACTION:

Returns the sine of X in radians. SIN(X) is calculated in single
precision.

COS8(X)=8IN(X+3.14159/2).
EXAMPLE:

PRINT SIN(1.5)
8974951
Ok

FORMAT
SPACE$(X)
ACTION:

Returns a string of spaces of length X. The expression X is rounded
to an integer and must be in the range 0 to 255.

EXAMPLE:

IOFORI=1TOB
20 X$ = SPACES$(1)
30 PRINT X$§;I
40 NEXT I
RUN

1

b
3
4
5

Ok

Also see the SPC function.

FORMAT:

SPC(I)

ACTION

Prints | blanks on the terminal. SPC may only be used with PRINT

and LPRINT statements. | must be in the range 0 to 255. A"} is
assumed to follow the SPC(I) command.

—

P

T T A
3.37 SQR

P
3.38 STR$

3.39 STRINGS

EXAMPLE:
PRINT “OVER" SPC(15) “THERE"
OVER THERE
Ok

Also see the SPACES tunction

FORMAT:
SQR(X)
ACTION:

Returns the square root of X. X must be >=0.

EXAMPLE:
10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN
10 3162278
15 3.872984
20 4472136
25 5
Ok
FORMAT
STRS$(X)
ACTION:

Returns a string representation of the value of X.

EXAMPLE:
5 REM ARITHMETIC FOR KIDS

10 INFUT “TYPE A NUMBER"N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400 500

Also see the VAL function

FORMATS
STRINGS$(1,J)
STRINGS(1,X$)

83

3.40 TAB

3.41 TAN

84

ACTION:

Returns a string of length | whose characters all have ASCIl code J
or the first character of X$

EXAMPLE:
10 X$ = STRING$(1045)
20 PRINT X$ “MONTHLY REPORT" X$
RUN
— MONTHLY REPORT--
Ok
FORMAT
TAB(l)
ACTION:

Spaces to position | on the terminal. If the current print position is
already beyond space |, TAB goes to the same position on the next
line. 1 1s the leftmost position, and the rightmost position is the width
minus one. | must be in the range 1 to 255 TAB may only be used in
PRINT and LPRINT statements.

EXAMPLE
10 PRINT “NAME" TAB(25) “AMOUNT” : PRINT
20 READ A$ B$
30 PRINT A$ TAB(25) B$
40 DATA “G. T. JONES","$25.00"
RUN
NAME AMOUNT
G. T. JONES $25.00
Ok
FORMAT:
TAN(X)
ACTION:

Returns the tangent of X in radians. TAN(X) is calculated in single
precision. If TAN overflows, the "Overflow” error message is
displayed, machine infinity with the appropriate sign is supplied as the
result, and execution continues.

EXAMPLE:

10 Y = Q*TAN(X)/2

P

3.42 TIMES

3.43 USR

3.44 VAL

FORMAT:
TIMES$
ACTION:

Sets or retrieves the current time, Returns an eight-character string
variable with the following format:

hh:mm:ss

where: hh = hour of day (0-23)
mm = minutes (0-59)

ss = seconds (0-59)

: = delimiter

Minutes and seconds are optional, and the time defaults to
“00:00:00". Leading zeros are optional. TIMES can be used like any
string variable, although it is being incremented constantly by a
hardware clock.

EXAMPLE:
TIME$ = "08:00"
Ok
PRINT TIME$
08:00:04
Ok

Format:

USR[<digit>](X)

ACTION

Calls the user's assembly language subroutine with the argument X,
<digit> is in the range 0 to 9 and corresponds to the digit supplied
with the DEF USR statement for that routine. If <digit> is omitted,
USRO is assumed. See Appendix E
EXAMPLE:

40 B = T*BIN(Y)

50 C = USR(B/2)
60 D = USR(B/3)

FORMAT:
VAL(XS$)

Returns the numerical value of string X$. The VAL function also strips

85

3.45 VARPTR

86

leading blanks, tabs, and linefeeds from the argument string. For
example:

VAIL(" -3)
returns -3.
EXAMPLE:

10 READ NAMES$ CITY$ STATE$ ZIP$

R0 IF VAL(ZIP$)<90000 OR VAL(ZIP$)>96699 THEN
PRINT NAME$ TAB(R5) “OUT OF STATE"

30 IF VAL(ZIP$)>=90801 AND VAIL(ZIP$)<=90815
THEN

PRINT NAME$ TAB(R5) “LONG BEACH"

See the STR$ function for numeric to string conversion.

FORMAT 1.
VARPTR(<variable name>)
FORMAT 2

VARPTR(#<flle number>)
ACTION:

Format 1: Returns the address of the first byte of data identified with
<wvariable name>. A value must be assigned to <variable name>
prior to execution of VARPTR. Otherwise an "lllegal function call”
error results. Any type variable name may be used (numeric, string,
array), and the address returned will be an integer in the range 32767
to -32768. If a negative address is returned, add it to 65536 to obtain
the actual address.

VARPTR is usually used to obtain the address of a variable or array
S0 it may be passed to an assembly language subroutine. A funetion
call of the form VARPTR(A(0)) is usually specified when passing an
array, so that the lowest-addressed element of the array is returned

NQOTE: All simple variables should be assigned before calling VARPTR
for an array, because the addresses of the arrays change whenever a
new simple variable is assigned.

Format 2: For sequential files, returns the starting address of the disk
170 buffer assigned to <file number>. For random files, returns the
address of the FIELD buffer assigned to <file number>

EXAMPLE:

100 X=USR(VARPTR(Y))

e s e i
A.1 STRING
DIMENSIONS

e A I
A.2 MULTIPLE
ASSIGNMENTS

APPENDIX A: Converting Programs to MS-BASIC

If you have programs written in a BASIC other than MS-BASIC, some
minor adjustments may be necessary before running them. Here are
some specific things to look for when converting BASIC programs.

Delete all statements that are used to declare the length of strings. A
statement such as DIM A$(1,J), which dimensions a string array for J
elements of length |, should be converted to the MS-BASIC statement
DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation.
Each of these must be changed to a plus sign, which is the operator
for MS-BASIC string concatenation.

In MS-BASIC, the MID$, RIGHT$, and LEFT$ functions are used to
take substrings of strings. Forms such as A$(l) to access the ith
character in A$, or A$(l,J) to take a substring of A$ from position | to
position J, must be changed as follows:

OTHER BASIC MS-BASIC
X$=AS$(1) X$=MID$(AS,1.1)
X$=A%(1J) X$=MID$(AS,| J-1+1)

If the substring reference is on the left side of an assignment and X$
is used to replace characters in A$, convert as follows:

OTHER BASIC MS-BASIC
AS(1)=XS$ MID$(AS,1,1)=X$
A$(1.J9)=X$ MID$(AS, | J-1+1)=X$

Some BASICs allow statements of the form:

10 LET B=C=0

to set B and C equal to zero. MS-BASIC would interpret the second
equal sign as a logical operator and set B equal to -1 if C equaled 0.
Instead, convert this statement to two assignment statements:

10 C=0:B=0

87

A.3 MULTIPLE
STATEMENTS

b T ST
A.4 MAT FUNCTIONS

Some BASICs use a backslash \ to separate multiple statements on

a line. With MS-BASIC, be sure all statements on a line are separated
by a colon (:)

Programs using the MAT functions available in some BASICs must be
rewritten using FOR . .. NEXT loops to execute properly.

T S R
B.1 PROGRAM FILE

COMMANDS

APPENDIX B: MS-BASIC Disk I/0

Disk 1/O procedures for the beginning MS-BASIC user are examined
in this appendix. If you are new to MS-BASIC or if you're getting disk-
related errors, read through these procedures and program examples
to make sure you're using all the disk statements correctly.

Wherever a filename is required in a disk command or statement, use
a name that conforms to your operating system's requirements for
filenames. (See Appendix C for CP/M-86 and Appendix D for

MS-DOS))

Here is a review of the commands and statements used in program

file manipulation.

SAVE <fllename>[,A]

LOAD <filename>{,R]

RUN <filename>{,R]

MERGE <filename>

Writes to disk the program currently
residing in memory, Optional A writes the
program as a series of ASCIl characters
(Otherwise, MS-BASIC uses a
compressed binary format.)

Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R is included,
however, open data files are kept open
Thus programs can be chained or
loaded in sections and access the same
data files. (LOAD <filename=>R and RUN
<filename=>R are equivalent.)

RUN <fiiename>> loads the program from
disk into memory and runs it. RUN
deletes the current contents of memaory
and closes all files before loading the
program. If the R option is included,
however, all open data files are kept
open. (RUN <filename>R and LOAD
<filename>>R are equivalent,)

Loads the program from disk into
memory but does not delete the current
conténts of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines

89

R R SR
B.2 PROTECTED
FILE

s RS

B.3 DISK DATA FILES
— SEQUENTIAL AND
RANDOM 1/0

B.3.1 SEQUENTIAL
FILES

90

have the same number, only the line
from the disk program is saved. After a
MERGE command, the “merged"”
program resides in memory, and
MS-BASIC returns to command level

KILL <fllename>> Deletes the file from the disk.
<filename> may be a program file, or a
sequential or random access data file.

NAME <old filename= To change the name of a disk file,

AS<new fllename> execute the NAME statement, NAME
<oldfile> AS <newfile>. NAME may be
used with program files, random files, or
sequential files,

If you wish to save a program in an encoded binary format, use the
“Protect"” option with the SAVE command. For example:

SAVE "MYPROG" P

A program saved this way cannot be listed or edited. You may also
want to save an unprotected copy of the program for listing and
editing purposes.

There are two types of disk data files that may be created and
accessed by a MS-BASIC program: sequential files and random
access files,

Sequential files are easier to create than random files but are limited
in flexibility and speed when it comes time to access the data. Data
that is written to a sequential file is a series of ASCII characters
stored, one item after another (sequentially), in the order it is sent and
is read back in the same way.

The statements and functions that are used with sequential files are:

OPEN PRINT# INPUT# WRITE#
PRINT# USING LINE INPUT#

CLOSE EOF LOC

The following program steps are required to create a sequential file
and access the data in the file:

1. OPEN the file in “O" maode. OPEN “0"#1DATA"

2. Write data to the file PRINT#1,A$;B§;C$
using the PRINT# statement.
(WRITE# may be used instead.)

3. To access the data in the CLOSE #1
file, you must CLOSE the file OPEN “I"#1 “DATA"
and reOPEN it in "I" mode.

4. Use the INPUT# statement to INPUT#1 XY2%
read data from the sequential file into
the program

Figure B-1 is a short program that creates a sequential file, "DATA",
from information you input at the terminal.

SR ===l

T T s e S = 5 S s 1y)
Figure B-1: Creating a Sequential Data File

10 OPEN “0”#1,“DATA”

20 INPUT “NAME";N$

25 IF N$="DONE” THEN END
30 INFUT “DEPARTMENT";D$
40 INPUT “DATE HIRED";H$
50 PRINT#1 N$;“"D$;"," H$
60 PRINT:GOTO 20

RUN

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

Now look at Figure B-2. It accesses the file "DATA” that was created
in Program 1 and displays the name of everyone hired in 1978

Figure B-2: Accessing a Sequential File

10 OPEN “I"#1 “DATA"

20 INPUT#1 ND HS$

30 IF RIGHT$(H$R)="78" THEN PRINT N$§
40 GOTO R0

RUN

EBENEEZER SCROOGE

SUPER MANN

Input past end in 20

Ok

The program in Figure B-2 reads, sequentially, every item in the file.
When all the data has been read, line 20 causes an “Input past end”

B.3.1.1 Adding Data
To A Sequential File

92

error. To avoid getting this error, insert line 15 which uses the EOF
function to test for end-of-file:

15 IF EOF(1) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also write formatted data
to the disk with the PRINT# USING statement. For example, the
statement:

PRINT#1 USING"#### ##".A BC,D

could be used to write numeric data to disk without explicit delimiters.
The comma at the end of the format string serves to separate the
items in the disk file.

The LOC function, when used with a sequential file, returns the
number of sectors that have been written to or read from the file
since it was OPENed. A sector is a 128-byte block of data.

If you have a sequential file residing on disk and later want to add
more data to the end of it, you cannot simply open the file in "Q"
mode and start writing data. As soon as you open a sequential file in
"0" mode, you destroy its current contents. The following procedure
can be used to add data tc an existing file called "NAMES".

1. OPEN "NAMES" in “I" mode.

2. OPEN a second file called "COPY" in "O" mode.

3. Read in the data in "NAMES" and write it to "COPY"".
4. CLOSE "NAMES" and KILL it.

5. Write the new information to "COPY"

6. Rename "COPY" as "NAMES" and CLOSE.

7. Now there is a file on disk called “NAMES" that includes all the
previous data plus the new data you just added.

Figure B-3 illustrates this technique. It can be used to create or add
onto a file called NAMES. This program also illustrates the use of
LINE INPUT# to read strings with embedded commas from the disk
file. Remember, LINE INPUT# will read in characters from the disk
until it sees a carriage return (it does not stop at quotes or commas)
or until it has read 255 characters.

Figure B-3: Adding Data to a Sequential File

10 ON ERROR GOTO 2000

20 OPEN “I"#1 ‘NAMES"

30 REM IF FILE EXISTS, WRITE IT TO “COPY"
40 OPEN “0"#2/COPY"

/"\

/\

B.3.2 RANDOM FILES

B.3.2.1 Creating A
Random File

60 IF EOF(1) THEN 90

80 LINE INPUT#1A$

70 PRINT#2A$

80 GOTO 50

90 CLOSE #1

100 KILL “NAMES"

110 REM ADD NEW ENTRIES TO FILE

120 INPUT “NAME";N$

130 IF N$="" THEN 200 ‘CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT “"ADDRESS? "A$

150 LINE INPUT “BIRTHDAY? ";B$

160 PRINT#2N$

170 PRINT#2A$

180 PRINT#2.B$

190 PRINT:GOTO 1RO

200 CLOSE

205 REM CHANGE FILENAME BACK TO “NAMES”

210 NAME “COPY" AS “NAMES"

2000 IF ERR=53 AND ERL=20 THEN OPEN “0"#2,COPY":RESUME 120
2010 ON ERROR GOTO ©

The error trapping routine in line 2000 traps a “File does not exist”
error in line 20. If this happens, the statements that copy the file are
skipped, and "COPY" is created as if it were a new file.

Creating and accessing random files requires more program steps
than sequential files, but there are advantages to taking the exira
trouble. One advantage is that random files require less room on the
disk, because MS-BASIC stores them in a packed binary format. (A
sequential file is stored as a series of ASCII characters.) The biggest
advantage to random files is that data can be accessed randomly,
i.e, anywhere on the disk — it is not necessary to read through all
the information, as with sequential files. This is possible because the
information is stored and accessed in distinct units called records and
each record is numbered

The statements and functions that are used with random files are:

OPEN FIELD LSET/RSET GET
PUT CLOSE LOC

MKIS$ cvl

MKS$ Cvs

MKD$ CvD

The following program steps are required to create a random file

1. OPEN the file for random OPEN “R" #1,'FILE" 32
access ("R" mode) This example
specifies a record length of 32 bytes.
If the record length is omitted, the
default is 128 bytes

93

B.3.2.2 Accessing A
Random File

94

2. Use the FIELD statement to FIELD #1, 20 AS N§$,
allocate space in the random 4 AS A$, 8 AS P$
buffer for the variables that will be
written 1o the random file.

3. Use LSET to move the data LSET N$=X$
into the random buffer. LSET A$=MKS$(AMT)
Numeric values must be made LSET P$=TEL$

into strings when placed in the buffer.
To do this, use the "'make” functions:
MKI$S to make an integer value into a
string, MKSS for a single precision
value, and MKD$ for a double
precision value.

4. Write the data from the buffer PUT #1 ,CODE%
to the disk using the PUT statement.

Figure B-4 takes information that is input at the terminal and writes it
to a random file. Each time the PUT statement is executed, a record
is written to the file. The two-digit code that is input in line 30
becomes the record number.

Figure B-4: Creating a Random File
10 OPEN “R”#1/FILE" 32

20 FIELD #120 AS N$, 4 AS A$, 8 AS P$
3Q INPUT“2-DIGIT CODE’{CODE%-

140 TINPUT “NAME"X$

50 INPUT “AMOUNT";AMT

60 INPUT “PHONE",TEL$:PRINT
70 LSET N$=X$

80 LSET A$=MKS$(AMT)

90 LSET P$=TEL$

100 PUT #1,CODE%

110 GOTO 30

NOTE: Do not use a FIELDed string variable in an INPUT or LET
statement. This causes the pointer for that variable to point into string
space instead of the random file buffer

The following program steps are required to access a random
file

1. OPEN the file in "R" mode. OPEN “R"#1,"FILE" 32
2. Use the FIELD statement to FIELD #1 20 AS N§,
allocate space in the random 4 AS A8, B ASP$

butfer for the variables that will be
read from the file.

NOTE: In a program that performs
both input and output on the same
randam file, you can often use just

one OPEN statement and one FIELD

statement,

3. Use the GET statement to move GET #1,CODE%
the desired record into the randem
buffer.

4, The data in the buffer may PRINT N§

now be accessed by the program. PRINT CVS(A$)
Numeric values must be converted

back to numbers using the "convert”

functions: CVI for integers, CVS for

single precision values, and CVD for

double precision values.

The program in Figure B-5 accesses the random file “FILE" that was
created in Figure B-4. By inputting the three-digit code at the terminal,
the information associated with that code is read from the file and
displayed.

Figure B-5: Accessing a Random File

10 OPEN “R”#1,'FILE" 32

20 FIELD #1, 20 AS N$,4 AS A$, 8 AS P$
30 INPUT “2-DIGIT CODE”;,CODE%

40 GET #1, CODE%

50 PRINT N$

60 PRINT USING “$§### ##”,CVS(A$)

70 PRINT P$:PRINT

80 GOTO 30

With random files, the LOC function returns the “current record
number.” The current record number is one plus the last record
number that was used in a GET or PUT statement. For example, the
statement:

IF LOC(1)>50 THEN END

ends program execution if the current record number in file#1 is
higher than 50.

Figure B-6 shows an inventory program that illustrates random file
access. In this program, the record number is used as the part
number, and it is assumed the inventory will contain no more than
100 different part numbers. Lines 300-960 initialize the data file by
writing CHR$(255) as the first character of each record. This is used
later (line 270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that the

program performs. When you type in the desired function number, line
230 branches to the appropriate subroutine.

95

96

R T e e B A T e s R R R I T B R B R
Figure B-6: Example Program Using a Random Access File

120
125
130
135
140
150
180
170
180
220
[R5

230
240
B0
260
R_70

=80
290
300
310
320
330
340
350
360
370

380(

390
400
410
420
430
440
4850
460
470
480
490
500
510
520
530
540
550
560
870
580
590
600
610
B30
830
640

OPEN“R" #1 “INVEN DAT" 39

FIELD#1,1 AS F$,30 AS D$, 2 AS Q82 AS R$4 AS P8

PRINT:PRINT “FUNCTIONS:":PRINT

PRINT 1 *INITIALIZE FILE"

PRINT 2 CREATE A NEW ENTRY"

PRINT 3/ DISPLAY INVENTORY FOR ONE PART”

PRINT 4 “ADD TO STOCK”

PRINT 5 “SUBTRACT FROM STOCK”

PRINT 6 DISPLAY ALL ITEMS BELOW REORDER LEVEL”

PRINT:PRINT:INFUT“FUNCTION";FUNCTION

IF (FUNCTION<1)OR(FUNCTION>6) THEN PRINT
“BAD FUNCTION NUMBER™:GO TO 130

ON FUNCTION GOSUB 900,250,390 480 560,680

GOTO 220

REM BUILD NEW ENTRY

GOSUB 840

IF ASC(F$)>255 THEN INPUT‘OVERWRITE";A$:
IF A$>“Y" THEN RETURN

LSET F$=CHR$(0)

INPUT “DESCRIPTION";DESCS$

LSET D$=DESC$

INPUT “QUANTITY IN STOCK”,Q%

LSET Q$=MKI$(Q%)

INPUT “REORDER LEVEL";R%

LSET R$-MKI$(R%)

INFUT “UNIT PRICE";P

LSET P$=MKS$(P)

PUT#1 PART%

RETURN

REM DISPLAY ENTRY

GOSUB 840

IF ASC(F$)=255 THEN PRINT “NULL ENTRY":RETURN

PRINT USING “PART NUMBER ###",PART%

PRINT D$

PRINT USING “QUANTITY ON HAND #####",0VI(Q$)

PRINT USING “REORDER LEVEL #####".CVI(R$)

PRINT USING “UNIT PRICE $§## ##”,CVS(P$)

RETURN

REM ADD TO STOCK

GOSUB 840

IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:RETURN

PRINT D$:INPUT “QUANTITY TO ADD" ;A%

QH%=CVI(Q$)+A%

LSET Q$=MKIS(Q%)

PUT#1 PART%

RETURN

REM REMOVE FROM STOCK

GOSUB 840

IF ASC(F$)=255 THEN PRINT “NULL ENTRY":RETURN

PRINT D$

INPUT “QUANTITY TO SUBTRACT";S%

Q%=CVI(Q$)

TF (Q%-8%)<0 THEN PRINT “ONIY";Q%; “IN STOCK™:GOTO 600

Q%=Q%-5%

IF Q%=<CVI(R$) THEN PRINT “QUANTITY NOW":Q%:
“ REORDER LEVEL";CVI({R$)

650

870
680
690
710
720

730
740
840
850

890
900
910
920
930
940
950
960

LSET Q$=MKI$(Q%)

PUT#1 PART%

RETURN

DISPLAY ITEMS BELOW REORDER LEVEL

FOR I=1 TO 100

GET#1]

IF CVI(Q$)CVI(R$) THEN PRINT D$;* QUANTITY";

CVI(Q$) TAB(50) “REORDER LEVEL",CVI(R$)

NEXT I

RETURN

INPUT “PART NUMBER";PART%

IF(PART%<1)OR(PART%>100) THEN PRINT “BAD PART
NUMBER”: GOTO 840 ELSE GET#1 PART%:RETURN

END

REM INITIALIZE FILE

INPUT “ARE YOU SURE”;B$:IF B$<">“Y” THEN RETURN

LSET F$=CHR$(RE5)

FOR I=1 TO 100

PUT#1 I

NEXT I

RETURN

97

R S
C.1 INITIALIZATION

98

APPENDIX C: Using MS-BASIC with the CP/M-86 Operating
System

The CP/M-86 version of MS-BASIC is supplied on a standard 5"
inch diskette, The name of the file is MSBASIC.COM for MS-DOS
or MSBASIC.CMD for CP/M-86.

To run MSBASIC.CMD, bring up CP/M-86 and type the following:
A>MSBASIC<RET~
The system will reply:

MS-BASIC Version 5.xx
[CP/M-86 Version)
Copyright 1977-1982 (C) by Microsoft
Created: dd-mmm-yy
xooex Bytes free
Ok

The initialization dialog has been replaced by a set of options which
are placed after the MS-BASIC command to CP/M-86. The format of
the command line is (the command line may appear differently on
your screen than on this page):

A-MSBASIC[-filename -] [/F:-number of files -]
[/M:<highest memory location -]
[/S:<maximum record size -]

It <filename> is present, MS-BASIC proceeds as if a RUN
<filename> command were typed after initialization is complete. A
default extension of .BAS is used if none is supplied and the filename
is less than 9 characters long. This allows MS-BASIC pregrams to be
executed in batch mode using the SUBMIT facility of CP/M-86. Such
programs should include a SYSTEM statement (see below) to return
to CP/M-86 when they have finished, allowing the next program in
the batch stream to execute.

If /F:<<number of files> is present, it sets the number of disk data
files that may be open at any one time during the execution of a
MS-BASIC program. Each file data block allocated in this fashion
requires 166 bytes of memory. If the /F option is omitted, the number
of files defaults to 3.

The /M:<<highest memory location> option sets the highest memory
location that will be used by MS-BASIC. In some cases it is desirable
to set the amount of memory well below the CP/M-86's FDOS to

P

e e
C.2 DISK FILES

R T S NI 5
C.3 FILES COMMAND

reserve space for assembly language subroutines. In all cases,
<highest memory location> should be below the start of FDOS
(whose address is contained in locations 6 and 7). If the /M option is
omitted, all memory up to the start of FDOS is used.

/S:<maximum record size> may be added at the end of the
command line to set the maximum record size for use with random
files. The default record size is 128 bytes.

NOTE: <number of files>, <highest memory location>, and
<maximum record size> are numbers that may be either decimal,
octal (preceded by &0) or hexadecimal (preceded by &H).

Examples:

A>MSBASIC PAYROLL.BAS Use all memory and 3 files, load
and execute PAYROLL.BAS.

A>MSBASIC INVENT/F:6 Use all memaory and 6 files, load
and execute INVENT.BAS.

A>MSBASIC /M:32768 Use first 32K of memory and 3 files.

A>MSBASIC DATACK/F:2/M:&HS000
Use first 36K of memory, 2 files, and
execute DATACK.BAS.

Disk filenames follow the normal CP/M-86 naming conventions. All
filenames may include A: or B: as the first two characters to specify a
disk drive, otherwise the currently selected drive is assumed. A
default extension of .BAS is used on LOAD, SAVE, MERGE and RUN
<filename> commands if no "." appears in the filename and the
filename is less than 9 characters long.

Large random files are supported. The maximum logical record
number is 32767. If a record size of 256 is specified, then files up to
8 megabytes can be accessed.

Format:

FILES[<filename>]

Purpose

Prints the names of files residing on the current disk.

Remarks:

It <filename> is omitted, all the files on the currently selected drive
will be listed. <filename> is a string formula which may contain
question marks (?) to match any character in the filename or

extension. An asterisk () as the first character of the filename or
extension will match any file or any extension.

99

fros e o is St e
C.4 RESET
COMMAND

T S
C.5 LOF FUNCTION

C.6 EOF

e e
c.7
MISCELLANEOUS

Examples:
FILES
FILES “* BAS"

FILES “B:*.*"
FILES “TEST?.BAS"

Format:
RESET
Purpose:

Closes all disk files and writes the directory information to a diskette
before it is removed fram a disk drive.

Remarks:

Always execute a RESET command before removing a diskette from
a disk drive. Otherwise, when the diskette is used again, it will not
have the current directory information written on the directory track.

RESET closes all open files on all drives and writes the directory
track to every diskette with open files.

Format:

LOF(<flle number>)

Action

Returns the number of records present in the last extent read or
written. If the file does not exceed one extent (128 records), then LOF
returns the true length of the file

Example:

110 IF NUM%>LOF(1) THEN PRINT “INVALID ENTRY"

With CP/M-86, the EOF function may be used with random files. If a
GET is done past the end of file, EOF will return -1. This may be
used to find the size of a file using a binary search or other algorithm

1. CSAVE and CLOAD are not implemented.

2. To return to CP/M-86, use the SYSTEM command or statement.
SYSTEM closes all files and then performs a CP/M-86 warm start
Alt-C always returns to MS-BASIC, not to CP/M-86

3. FRCINT is at 103 hex and MAKINT is at 107 hex

e
D.1 INITIALIZATION

APPENDIX D: Using MS-BASIC with the MS-DOS Operating
System

The MS-DOS version of MS-BASIC is supplied on a standard 5
inch diskette. The name of the file is MSBASIC.COM. (A 48K or
larger MS-DOS system is recommended.)

To run MS-BASIC, bring up MS-DOS and type:
A>MSBASIC-RET>
The system will reply:

MS-BASIC Rev. 5.xx
[86-DOS8 Version]
Copyright 1977-1981 (C) by Microsoft
Created: dd-mmm-yy
xxoox Bytes free
Ok

The initialization dialog has been replaced by a set of options which
are placed after the MS-BASICcommand to MSDOS. The format of the
command line is (the command line may appear somewhat differently
on your screen than on this page):

A>MSBASIC [<filename>][/F <number of files>]
[/M:<highest memory location>][/S:<<maximum record
size>)

If <filename> is present, MS-BASIC proceeds as if a RUN
<filename> command were typed after initialization is complete. A
default extension of .BAS is used if none is supplied and the filename
is less than 9 characters long. This allows MS-BASIC programs tc be
executed in batch mode using the SUBMIT facility of MS-DOS. Such
programs should include a SYSTEM statement (see below) to return
to MS-DOS when they have finished This allows the next program in
the batch stream to execute

If /F<number of files> is present, it sets the number of disk data
files that may be open at any one time during the execution of a
MS-BASIC program. Each file data block allocated in this fashion
requires 166 bytes of memory. If the /F option is omitted, the number
of files defaults to 3

The /M <highest memory location> oplion sets the highest memory
location that will be used by MS-BASIC

101

LA S SRR
D.2 DISK FILES

N T T e
D.3 FILES COMMAND

102

?8:<maximum record size> may be added at the end of the
command line to set the maximum record size for use with random
files. The default record size is 128 bytes.

NOTE: <number of files>, <highest memory location>, and
<maximum record size> are numbers that may be either decimal,
octal (preceded by &O) or hexadecimal (preceded by &H).

Examples:

A>MSBASIC PAYROLL.BAS Use all memory and 3 files, load
and execute PAYROLL BAS.

A>MSBASICINVENT/F6 Use all memory and 6 files, load
and execute INVENT.BAS.

A>MSBASIC/M:32768 Use first 32K of memory and 3 files.

A>MSBASIC DATACK/F:2/M:H9000
Use first 36K of memory, 2 files,
and execute DATACK.BAS.

Disk file names follow the normal MS-DOS naming conventions. All
file names may include A: or B: as the first two characters (to specify
a disk drive); otherwise the currently selected drive is assumed. A
default extension of .BAS is used on LOAD, SAVE, MERGE and RUN
<filename>> commands if no “." appears in the file name and the file
name is less than 9 characters long.

Large random files are supported. The maximum logical record
number is 32767. If a record size of 256 is specified, then files up to
8 megabytes can be accessed.

Format:

FILES[<filename>]

Purpose:

Prints the names of files residing on the current disk.
Remarks:

It <filename> is omitted, all the files on the currently selected drive
will be listed. <filename> is a string formula which may contain
question marks (?) to match any character in the file name or
extension. Asterisk (*) as the first character of the file name or
extension will match any file or any extension.

Examples:

FILES

FILES u-:*.tn

FILES "B:.**"
FILES “TEST? BAS”

s]
D.4 RESET
COMMAND

e i
D.5 LOF FUNCTION

D.6 EOF

R
D.7
MISCELLANEOUS

Format
RESET
Purpose:

Closes all disk files and writes the directory information to a diskette
betore it is removed from a disk drive.

Remarks:

Always execute a RESET command before removing a diskette from
a disk drive. If you forget, the diskette will not have the current
directory information written on the directory track when it is used
again.

Format:

LOF(<file number>)

Purpose

Returns the length of the file in bytes.

Example:

110 IF NUM%>LOF(1) THEN PRINT “INVALID ENTRY"

Format:
EOF (<flle number>)
Purpose:

Returns -1 if the end of a sequential or random file has been
reached. If a GET is done past the end of the file, EOF will return -1.
EOF may be used to find the size of a file using a binary search or
other algorithm.

Example:
10 OPEN “I",1,"DATA"
20 C=0
30 IF EOF(1) THEN 100

40 INPUT #1 M(C)
50 C=C+1:GOTO 30

1. CSAVE and CLOAD are not implemented.

2. Use the SYSTEM command or statement to return to MS-DOS
SYSTEM closes all files and then performs a MS-DOS warm start.
Alt-C always returns to MS-BASIC, not to MS-DOS

3. FRCINT is at 103 hex and MAKINT is at 107 hex.

103

R R A BT
E.1 MEMORY
ALLOCATION

N T R
E.2 USING THE CALL
STATEMENT

104

e R 1 T 0 oA e 0 LT e e P P RO SR W S
APPENDIX E: Assembly Language Subroutines

MS-BASIC has provisions for interfacing with assembly language
subroutines via the USR function and the CALL statement.

The USR function allows assembly language subroutines to be called
in the same way MS-BASIC Intrinsic functions are called.

IMPORTANT: Memory space must be set aside for an assembly
language subroutine before it can be loaded. During initialization,
enter the highest memory location minus the amount of memory
needed for the assembly language subrouting(s) with the /M: switch.

In addition to the MS-BASIC interpreter code area, MS-BASIC uses up
to 64K of memory beginning at its data (DS) segment.

If more stack space is needed when an assembly language
subroutine is called, the MS-BASIC stack can be saved and a new
stack set up for use by the assembly language subroutine. The stack
must be restored, however, before returning from the subroutine,

You can load the assembly language subroutine into memaory by
using the operating system or the MS-BASIC POKE statement. If
you have the Programmer's Tool Kit, Volume /|, the routines can be
assembled with the MACRO-86 assembler and linked using the
MS-LINK linker, but not assembled. To load the program file,
observe these guidelines:

1) The subroutines must not contain any long references.

2) Skip over the first 512 bytes of the MS-LINK output file, then read
in the rest of the file,

The CALL statement is the recommended way of interfacing 8086
machine language programs with MS-BASIC. It is further suggested
that the old style user call (x=USR(n)) not be used.

Format

CALL <variable name> [(<argument list>)]

where: variable name contains the address that is the starting
point in memory of the subroutine being CALLed.

argument list contains the variables or constants,
separated by commas, that are to be passed to the
routine.

The CALL statement conforms to the INTEL PL/M-86 calling
conventions outlined in Chapter 9 of the INTEL PL/M-86 Compiler
Operator's Manual. MS-BASIC follows the rules described for the
MEDIUM case (summarized in the following discussion).

Invoking the CALL statement causes the following to occur.

1. For each parameter in the argument list, the 2 byte ocifset of the
parameter's location within the Data Segment [DS] is pushed onto
the stack.

2. MS-BASIC return address Code segment [CS], and offset [IP] are
pushed onto the Stack

3. Control is transferred to the user's routine via an 8086 long call to
the segment address given in the last DEF SEG statement, and
offset given in <variable name>.

These actions are illustrated by the two following diagrams, which
illustrate, first, the state of the stack at the time of the CALL
statement, and, second, the condition of the stack during execution of
the CALLed subroutine.

Figure E-1: Stack Layout when CALL Statement is Aclivated

high
addresses parameter O
parameter 1
Each parameter is a 2
byte POINTER into memory

&}
5 a parameter n
1 u
a n
c t return segment address
k e
r return offset
Stack pointer (SP reg. contents)
vV
low
addresses

The user's routine now has control, Parameters may be referenced by
moving the Stack pointer [SP] to the Base Pointer [BP] and adding a
positive offset to [BP].

105

106

S T T U 3 S S B e S P SIS B DU e e T
Figure E-2: Stack Layout During Execution of a CALL Statement

high
addresses parameter 0
parameter 1
Absent if any parameter is
referenced within a nested
Cc : procedure
S 0 parameter n
t u
a n
(o t return segment address
k e Absent in local
t procedure
return offset
Stack peinter (SP reg.
contents)
old stack marker
New stack marker
local variables
Only in reentrant
procedure
This space may be
used during pro-
cedure execution Stack pointer may change
during procedure execution
v
low
addresses

You must observe the following rules when coding a subroutine;

1. The CALLed routine may destroy the AX, BX, CX, DX, SI, DI, and
BP registers.

2. The CALLed program MUST know the number and length of the
parameters passed. References to parameters are positive offsets
added to [BP] (assuming the called routine moved the current
stack pointer into BP; i.e, MOV BP,SP). That is, the location of pi
is at 8[BP], p2 is at 6[BP], p3 is at 4(BP], . . . etc

3. The CALLed routine must do a RET <n>> (where <n>> is two
times the number of parameters in the argument list) to adjust the
stack to the start of the calling sequence.

4. Values are returned to MS-BASIC by including in the argument list
the variable name which will receive the result.

5. If the argument is a string, the parameter's offset points to 3 bytes
called the “String Descriptor." Byte 0 of the string descriptor
contains the length of the string (0 to 255). Bytes 1 and 2,
respectively, are the lower and upper 8 bits of the string starting
address in string space.

™

IMPORTANT: If the argument is a string literal in the program, the
string descriptor will point to program text. Be careful not to alter
or destroy your program this way. To avoid unpredictable results,
add +" to the string literal in the program. Example:

20 A$ = “BASIC'+" "

This will force the string literal to be copied into string space. Now
the string may be modified without affecting the program.

6. Strings may be altered by user routines, but the length MUST
NOT be changed. MS-BASIC cannot correctly manipulate strings if
their lengths are modified by external routines.

Example:

100 DEF SEG=&H8000
110 FOO=0
120 CALL FOO(AB$,C)

Line 100 sets the segment to 8000 Hex. The value of FOO is added
into the address as the low word after the DEF SEG value is left
shifted 8 bits. Here, FOO is set to zero, so that the call to FOO will
execute the subroutine at location 80000H.

The following sequence of B086 assembly language demonstrates
access of the parameters passed and storing a return result in the
variable 'C'.

Example:
MOV BPSP ; Get current Stack posn in BP.
MOV BX§6[BP] ; Get address of BS dope.
MOV CL,[BX] ; Get length of B$ in CL.
MOV DX,1[BX] ; Get address of B$ text in DX.
MOV SI,8(BP) . Get address of ‘A’ in SI.
MOV DIA4[BP] ; Get pointer to 'C' in DI,
MOVS WORD : Store variable ‘A" in 'C'.
RET 6 ; Restore Stack, return.

IMPORTANT: The called program must know the variable type for
numeric parameters passed. [n the above example, the instruction
MOVS WORD will copy only 2 bytes. This is fine if variables A and C
are integer. We would have to copy 4 bytes if they were Single
Precision and copy 8 bytes if they were Double Precision.

107

e I P S Rl |
E.3 USING USR The format of the USR function call is;

FUNCTION CALLS
x = USR[<dlgif>](argument)

where: <digit> is from 0 to 9. <digit> specifies which USR
routine is being called. (See "The DEF USR Statement™).
If <digit> is omitted, USRO is assumed.

argument is any numeric or string expression.

x is the variable receiving the result of the function call.
Its type (numeric or string) must be consistent with the
argument passed, or may be set to Integer by calling
MAKINT in the user's routine before returning to
MS-BASIC.

A DEF SEG statement MUST be executed prior to a USR call to
assure that the Code Segment points to the subroutine being called.
The segment given in the DEF SEG statement determines the starting
segment of the subroutine. (See the DEF SEG statement above.)

For each USR function used, a corresponding DEF USR statement
must have been executed to define the USR call offset. The address
given in the DEF USR statement determines the starting address of
the subroutine.

When the USR function call is made, register [AL] contains a value

that specifies the type of argument that was given. The value in [AL]
may be one of the following:

2 Two-byte integer (two's complement)
3 String

4 Single precision floating point number
8 Double precision floating point number

If the argument is a number, the [BX] register pair points to the
Floating Point Accumulator (FAC) where the argument is stored.

FAC is the exponent minus 128, and the binary point
is to the left of the most significant bit of the
mantissa.

FACA contains the highest 7 bits of mantissa with leading 1

suppressed (implied). Bit 7 is the sign of the number
(O=positive, 1=negative).

If the argument is an integer.
FAC-2 contains the upper 8 bits of the argument

FAC-3 contains the lower 8 bits of the argument.

108

Example:

Example:

If the argument is a single precision floating point number:
FAC-2 contains the middle 8 bits of mantissa.
FAC-3 contains the lowest 8 bits of mantissa.
If the argument is a double precision floating point number:

FAC-7 contain four more bytes of mantissa (FAC-7
To contains the lowest 8 bits).
FAC-4

If the argument is a string, the [DX] register pair paints to 3 bytes
called the “string descriptor.” Byte 0 of the string descriptor contains
the length of the string (0 to 255). Bytes 1 and 2, respectively, are the
lower and upper 8 bits of the string starting address in MS-BASIC's
Data Segment.

IMPORTANT: If the argument is a string literal in the program, the
string descriptor will point to program text. Be careful not to alter or
destroy your program this way. See the CALL statement above

Usually, the value returned by a USR function is the same type
(integer, string, single precision or double precision) as the argument
that was passed to it.

110 DEF USRO=&HS8000 ‘Assumes user gave /M:32767
120 X=5 ‘Note that X is single precision

130 Y = USRO(X)

140 PRINT Y

We have loaded the following assembly language routine 1o simply
multiply the argument passed by 2 and return an integer result.

Always be sure that your programs are defined by a PROC FAR
statement.

T N IS L e 0 s S e T S AP LS A S A R N

DOUBLE SEGMENT

ASSUME CS:DOUBLE
FRCINTOFFSET EQU 103H
MAKINTOFFSET EQU 107H
FRCINT LABEL DWORD

oW FRCINTOFFSET
FRCSEG Dw ?
MAKINT LABEL DWORD

Dw MAKINTOFFSET
MAKSEG Dw e

109

110

USRPRG PROC FAR

POP SI
POP AX
FUSH AX
FUSH 81
MOV FRCSEG.AX
MOV MAKSEG AX
CALL FRCINT
ADD BX BX
CALL MAKINT
RET

USRPRG ENDP

DOUBLE END3

Recover M3-BASIC C8

Set segment for long indirect CALL

. Force arg in FAC to int in [BX]

[BX] = [BX] * 2

. Put Result back in FAC

Long return to MS-BASIC

When FRCINT or MAKINT is called and when the subroutine
terminates with a return, ES, DS, and SS must have the same value
they had when the subroutine was entered. These registers point to

the MS-BASIC Data Segment.

o
e]
F.1 OPERATIONAL
DIFFERENCES
,“‘-—‘
—

APPENDIX F: MS-BASIC Compiler

The MS-BASIC Compiler package contains the following soft-
ware: MS-BASIC Compiler, MACRO assembler, and LINK loader.
These manuals are also supplied: MS-BASIC Reference Manual,
MS-BASIC Compiler Programmer's Guide, and Programmer’s Tool
Kit, Volume II. The Programmer's Tool Kit describes the use of

the MACRO-86 macroassembler and the MS-LINK linker utility. The
MS-BASIC Compiler Programmer's Guide describes the use

of the compiler, its command format, compilation switches,

and error messages. The MS-BASIC language that is used with the
MS-BASIC Compiler is the same as the MS-BASIC described in
this manual, with the following exceptions.

The Compiler interacts with the censole only to read compiler
commands. These specify what files are to be compiled. There is no
“direct mode," as with the MS-BASIC interpreter. Commands that are
usually issued in the direct mode with the MS-BASIC interpreter are
not smptemented on the eompiler . .

The following statements and commands are not implemented and
will generate an error message:

AUTO CONT DELETE
EDIT ERASE LIST
LOAD MERGE NEW
RENUM LLIST SAVE

Because there is no direct mode for typing in programs or edit mode
for editing programs, use the MS-BASIC interpreter for creating and
editing programs. |f you use the interpreter, be sure to SAVE the file
with the A (ASCII format) option.

The compiler cannot accept a physical line that is more than 253
characters in length. A logical statement, however, may contain as
many physical lines as desired. Use line feed to start a new physical
line within a logical statement.

To reduce the size of the compiled program, there are no program
line numbers included in the object cade generated by the compiler
unless the /D, /X, or /E switch is sel in the compiler command. As a
result, error messages contain the address where the error occurred,
instead of a line number. The compiler listing and the map generated
by LINK are used to identify the line that has the error. It is always a
good idea to debug programs using the MS-BASIC Interpreter
before attempting to compile them. See the MS-BASIC Compiler
Programmer's Guide for more information.

111

F.2 LANGUAGE
DIFFERENCES

112

Most programs that run on the MS-BASIC interpreter will run on the
MS-BASIC compiler with little or no change. However, it is ~ecessary
to note differences in the use of the following program statements:

1. CALL

The <variable-name>> field in the CALL statement must contain an
external symbol, i.e, one that is recognized by LINK as a global
symbol. This routine must be supplied by the user as an assembly
language subroutine or a routine from the FORTRAN library.

2. CHAIN and RUN

The CHAIN statement is used to chain to a new program overlay
using the runtime module. The RUN statement is to be used to
execute any executable file. (Refer to Appendix C for CP/M and
Appendix D for MS-DQOS).

3. CLEAR

The CLEAR statement is only supported in compiled programs
using the runtime module.

4. COMMON

The COMMON statement must appear before any executable
statements. See section 2.7 for further details.

5. DEFINT/SNG/DBL/STR

The compiler does not “execute” DEFxxx statements; it reacts to
the static occurrence of these statements, regardless of the order
in which program lines are executed. A DEFxxx statement takes
effect as soon as its line is encountered. Once the type has been
defined for a given variable, it remains in effect until the end of
the program or until a different DEFxxx statement with that
variable takes effect.

6. DIM and ERASE

The DIM statement is similar to the DEFxxx statement in that it is
scanned rather than executed. That is, DIM takes effect when is
line is encountered. If the default dimension (10) has already been
established for an array variable and that variable is later
encountered in a DIM statement, a "Redimensioned array' error
results.

There is no ERASE statement in the compiler, so arrays cannot
be erased and redimensioned. An ERASE statement will produce
a fatal error.

Also note that the values of the subscripts in a DIM statement
must be integer constants; they may not be variables, arithmetic
expressions, or floating paint values.

10.

Example:

DIM Al (I)
DIM Al (34)

are both illegal.

END

During execution of a compiled program, an END statement
closes files and returns control to the operating system. The
compiler assumes an END statement at the end of the program,
so “running off the end” produces proper program termination.
FOR/NEXT and WHILE/WEND

Loops must be statically nested when using these statements.
ON ERROR GOTO/RESUME <line number>

If a program contains ON ERROR GOTO and RESUME <line
number> statements, the /E compilation switch must be used. If
the RESUME NEXT, RESUME, or RESUME 0 form is used, the /X

switch must also be included. See the MS-BASIC Compiler
Programmer’s Guide for an explanation of these switches.

REM

REM statements or remarks starting with a single quotation mark
do not take up time or space during execution, and so may be
used as freely as desired.

. STOP

The STOP statement is identical to the END statement. Open
files are closed and control returns to the operating system

. TRON/TROFF

In order to use TRON/TROFF, the /D compilation switch must be
used. Otherwise, TRON and TROFF are ignered and a warning
message is generated.

. USRn Functions

USRnN Functions are significantly different from the interpreter
versions. The argument to the USRn function is ignored and an
integer result is returned in the HL registers. It is recommended
that USRn functions be replaced by the CALL statement.

. %INCLUDE

The %INCLUDE <filename> statement allows the compiler to
include source from an alternate file. The %INCLUDE statement
must be the last statement statement on a line. The format of the

113

F.3 EXPRESS
EVALUATION

114

ION

Example:

%INCLUDE statement is:
<line number> %INCLUDE <filename>
Example
999 %INCLUDE SUB1000.BAS
15. Double-Precision Transcendental Functions
SIN, COS, TAN, SQR, LOG, and EXP return double precision
results if given a double precision argument. Exponentiation
with double precision operands will return a double precision
result.

16. String Variables

The string space is maintained differently with the MS-BASIC
Compiler than with the interpreter. Using PEEK, POKE,
VARPTR, or assembly language routines to change string
descriptors will result in a "String Space Corrupt” error.

During expression evaluation, the operands of each operator are
converted to the same type, that of the most precise operand.

Example
QR=J%+A |+Q#

causes J% to be converted to single precision and added to A |. this
result is converted to double precision and added to Q#.

The compiler is more limited than the interpreter in handling numeric
overflow. For example, when run on the interpreter the following
program:

1%=20000
J%=R0000
K%=30000
M%=I1%+J%-K%

yields 10000 for M%. That is, it adds 1% to J% and, because the
number is too large, it converts the result into a floating point number.
K% is then converted to floating point and subtracted. The result of
10000 is found, and is converted back to integer and saved as M%.

The compiler, however, must make type conversion decisions during
compilation. It cannot defer until the actual values are known. Thus,

the compiler would generate code to perform the entire operation in

integer mode. If the /D switch were set, the error would be detected.
Otherwise, an incorrect answer would be produced.

Example:

F.4 INTEGER
VARIABLES

Example:

In order to produce optimum efficiency in the compiled program, the
compiler may perform any number of valid algebraic transformations
before generating the code. For example, the program

Y A R T D S U S S S T N T B T e e SRS L LAY

1%=20000
J%=18000
K%=20000
M%=1%+J%+K%

could produce an incorrect result when run. If the compiler
actually performs the arithmetic in the order shown, no
overflow occurs. However, if the compiler performs 1%+K% first
and then adds J%, an overflow will occur. The compiler follows
the rules for operator precedence and parenthetic modification
of such precedence, but no other guarantee of evaluation order
can be made.

In order to produce the fastest and most compact object code
possible, make maximum use of integer variables. For example, this
program:

L T e Y R A S 5721 A S S e ST £ e
FOR I=1 TO 10

A (IH=0
NEXT I

can execute approximately 30 times faster by simply substituting "1%"
for "I". It is especially advantageous to use integer variables to
compute array subscripts. The generated code is significantly faster
and more compact

115

116

APPENDIX G: Summary of Error Codes and Error Messages

CODE NUMBER MESSAGE

NF

SN

RG

oD

FC

NEXT without FOR

A variable in a NEXT statement does not
correspond to any previously executed, unmatched
FOR statement variable.

Syntax error

A line is encountered that contains some incorrect
sequence of characters (such as unmatched
parentheses, misspelled command or statement,
incorrect punctuation, etc.).

Return without GOSUB
A RETURN statement is encountered for which
there is no previous, unmatched GOSUB statement.

Out of DATA

A READ statement is executed when there are no
DATA statements with unread data remaining in
the program.

lllegal function call

A parameter that is out of range is passed to a
math or string function. An FC error may also
occur as the result of.

1. A negative or unreasonably large subscript
2. A negative or zero argument with LOG
3. A negative argument to SQR

4. A negalive mantissa with a non-integer
exponent

5. A call to a USR function for which the starting
address has not yet been given

6. An improper argument to MIDS, LEFTS,
RIGHTS, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC. STRINGS SPACES$, INSTR, or ON ... GOTO.

ov

oM

UL

BS

DD

/0

™

0s

LS

14

Overflow

The result of a calculation is too large to be
represented in MS-BASIC number format. I
underflow occurs, the result is zero and execution
continues without an error.

Qut of memory

A program is too large, has too many FOR loops
or GOSUBS, too many variables, or expressions
that are too complicated.

Undefined line number
A line reference in a GOTQO, GOSUB, IF ... THEN
... ELSE or DELETE is tc a nonexistent line.

Subscript out of range

An array element is referenced either with a
subscript that is outside the dimensions of the
array, or with the wrong number of subscripts

Duplicate definition

Two DIM statements are given for the same array,
or a DIM statement is given for an array after the
default dimension of 10 has been established for
that array.

Division by zero

A division by zero is encountered in an expression,
or the operation of involution results in zero being
raised to a negative power. Machine infinity with
the sign of the numerator is supplied as the result
of the division, or positive machine infinity is
supplied as the result of the involution, and
execution continues

lllegal direct
A statement that is illegal in direct mode Is
entered as a direct mode command.

Type mismatch

A string variable name is assigned a numeric
value or vice versa; a function that expects a
numeric argument is given a string argument or
vice versa.

Qut of string space

String variables have caused MS-BASIC to exceed
the amount of free memory remaining. MS-BASIC

will allocate string space dynamically, until it runs
out of memory

String too long
An attempt is made to create a string more than
255 characters long.

117

118

ST

CN

UF

17

20

21

22

23

26

29

30

DISK
50

String formula too complex

A string expression is too long or too complex.
The expression should be broken into smaller
expressions.

Can't continue
An attempt is made to continue a program that

1. Has halted due to an error.

2. Has been medified during a break in execution,

3. Does not exist.

Undefined user function
A USR function is called before the function
definition (DEF statement) is given.

No RESUME
An error trapping routine is entered but contains
no RESUME statement.

RESUME without error
A RESUME statement is encountered before an
error trapping routine is entered.

Unprintable error

An error message is not available for the error
condition which exists. This is usually caused by
an ERROR with an undefined error code.

Missing operand
An expression contains an operator with no
operand following it.

Line buffer overflow
An attempt is made to input a line that has too
many characters.

FOR without NEXT
A FOR was encountered without a matching NEXT.

WHILE without WEND
A WHILE statement does not have a matching
WEND.

WEND without WHILE
A WEND was encountered without a matching
WHILE.

ERRORS

Field overflow
A FIELD statement is attempting to allocate more
bytes than were specified for the record length of
a random file

51

52

53

54

55

57

58

61

62

63

64

66

Internal error

An internal malfunction has occurred in
MS-BASIC. Report the conditions under which
the message appeared to your dealer.

Bad file number

A statement or command references a file with a
file number that is not OPEN or is out of the range
of file numbers specified at initialization.

File not found
A LOAD, KILL or OPEN statement references a
file that does not exist on the current disk.

Bad file mode

An attempt is made to use PUT, GET, or LOF with
a sequential file, to LOAD a random file or to
execute an OPEN with a file mode other than |, O,
or R.

File already open

A sequential output mode OPEN is issued for a file
that is already open; or a KILL is given for a file
that is open.

Disk 1/O error
An |/Q error occurred on a disk |/O operation. It
is a fatal error, i.e. the operanng syslem cannot

v4 neeever‘from 1%0!&‘9@-

File already exists
The filename specified in a NAME statement is
identical to a filename already in use on the disk.

Disk full
All disk storage space is in use.

Input past end

An INPUT statement is exeucted after all the data
in the file has been INPUT, or for a null (empty)
file. To avoid this error, use the EOF function to
detect the end of file.

Bad record number

In a PUT or GET statement, the record number is
either greater than the maximum allowed (32767)
or equal to zero.

Bad file name

An illegal form is used for the filename with LOAD,
SAVE, KILL, or OPEN (e.g., a filename with too
many characters).

Direct statement in file

A direct statement is encountered while LOADing
an ASCll-format file. The LOAD is terminated.

119

67 Too many files
An attempt is made to create a new file (using
SAVE or OPEN) when all 255 directory entries are
full.

120

A SRR T TR TR AT S S S R A A e T T e e M L s
APPENDIX H: Mathematical Functions

Functions that are not intrinsic to MS-BASIC may be calculated as

follows.

FUNCTION

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT

HYPERBOLIC
COSECANT

HYPERBOLIC
COTANGENT

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

MS-BASIC EQUIVALENT

SEC(X)=1/COS(X)
CSC(X)=1/SIN(X)

COTX)=1 /TAN(X)

ARCSIN(X)=ATN{X/ SQR(-X*X+1))
ARCCOS(X)=-ATN (X/SQR(-X"X+1)j+1 5708

ARCSEC(X)=ATN(X/SQR(X*X-1))
+SGN(SGN(X)-1)*1.5708

ARCCSC(X)=ATN(X/SQR(X*X-1))
+SGN(X)-1)"1.5708

ARCCOT(X)=ATN(X)+1 5708
SINH(X)=(EXP(X)-EXP(-X))/2
COSH(X)=(EXP(X)+EXP(-X))/2
TANH(X)=EXP(-X)/ EXP(X)+EXP({-X))"2+1
SECH(X)=2/(EXP(X)+EXP(-X))

CSCH(X)=2/(EXP(X)-EXP(-X))
COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))'2+1
ARCSINH(X)=LOG(X+SQR(X*X+1))
ARGCOSH(X)=LOG(X+SQR(X*X-1)
ARCTANH(X)=LOG((1+X)/(1-X))/2
ARCSECH(X)=LOG({SQR(-X*X+1)+1)/X)
ARCCSCH(X)=LOG((SGN(X)*SQR(X*%+1)

+1)/X

ARCCOTH(X)=LOG((X+1)/(X-1))/2

121

R R SR e S S e B S P RS S B S M D
APPENDIX I: ASCIl Character Codes

Dec Hex CHR Dec Hex CHR Dec Hex CHR
000 OOH NUL 043 2BH ¥ 56H v
oo 01H SOH 044 2CH 57H W
002 02H STX 045 2DH - 58H X
003 0O3H ETX 046 2EH . 59H ¥
004 04H EOT 047 2FH & 5AH Z
005 05H ENQ 048 30H 0 5BH [
006 06H ACK 049 31H 1 5CH i
o7 AT 574) BEL 050 32H 2 5DH]
008 08H BS 051 33H 3 5EH 5
009 09H HT 052 34H 4 5FH -
010 CAH LE 053 35H 5 60H
01 0BH vT 084" - 36H 6 61H a
012 0CH FF 055 37TH 7 62H b
013 0DH CR 056 38H 8 63H c
014 OEH SO 057 - 39H 9 64H d
015 . .OFH SI 058 3AH ; 65H e
. 016 JOH . 059 _3BH ’ 66H f
lome2ptiV iEsforCamputerg: ¢
w018 LioH 1De2 861 —abit Ll L 6BH h
019 13H DC3 062 3EH > 69H i
020 14H DC4 063 3FH ? 6AH j
021 15H NAK 064 40H @ 6BH k
p22 16H SYN 065 41H A 6CH |
023 17H ETB 066 42H B 6DH m
024 18H CAN 067 43H (® 6EH n
025 19H EM 068 44H D 6FH o]
026 1AH SUB 069 . 45H E 70H p
027 1BH ESCAPE 070 46H F 7T1H q
028 1{1CH S 071 47H G 72H r
029 1DH GS 072 48H H 73H S
030 -TER RS 073 49H | 74H t
031 1FH us 074 4AH J 75H u
032 20H SPACE 075 4BH K 76H v
033 2%h ! 076 4CH L 77H w
034 22H E 077 4DH M 78H ¥
035 23H 4 078 4EH N 79H y
036 24H $ 079 4FH 0] 7AH z
037 25H % 080 50H P 7BH {
038 26H & 081 51H Q 7CH |
039 .27H ' 082 52H R TDH]
040 28H (083 53H S 7EH e
041 29H) 084 54H T 7FH DEL
042 2AH 5 085 55H u

NOTE: Dec=decimal, Hex=hexadecimal (H), CHR=character,
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout.

122

#

READER’S
COMMENTS
FORM

Your comments are a main source of ideas for improvement. Please
use this form to provide us with feedback on this document.
DOCUMENT
TEEE:
PART NUMBER:

YOUR GENERAL REACTION:

Overall quality: [Excellent [Adequate [Poor
Text clarity: O Very clear [Adequate [Difficult
Usefulness of format: [Helpful] Adequate [J Inconvenient

YOUR SPECIFIC COMMENTS:
Did you find any errors in the document?

If so, describe:

Was any important information omitted from the document?
If so, describe:

What sections of the document were especially useful to you?

What sections were of no use to you?

How could material be presented to be more helpful to you?

READER'S NAME: _ =L
JOB TITLE:
COMPANY:
ADDRESS:

Please complete and return this form to the office, subsidiary or dis-
tributor nearest you

el e o
T i e e i e 0 g e

R

...m

Ny »

=

= L/

ol | R L
] 1.-. d
R

T

Al

wdiy

oo ST Yo Nl e T A e -

OFFICES, SUBSIDIARIES, AND DISTRIBUTORS

FRANCE

Victor Technologies, Inc. S AR.L
A rue Jean Jaures

. 1 ieaux

Phone:

Telex: (e

ITALY

Harden S.p.A. Divisione Elettronica
Via Guiseppina il

SRRl ospiro (Cremona)

Telex:

UNITED KINGDOM
ACT (Microsystems) Ltd.
Shenstone House

Halesowen

West Midlands aiiniiy
Phone

Telex: il

UNITED STATES
Victor Technologies, Inc
WE| Pucblo Road
Scotts Valley, il
Phone: i
Telex: —

WEST GERMANY
Sirius Computer GmbH
Orber Strasse &
- Frankiurl
Phone:

Telex /_—_—

	Document (1)
	Document (1a)
	Document (2)
	Document (2a)
	Document (3)
	Document (3a)
	Document (4)
	Document (4a)
	Document (5)
	Document (5a)
	Document (6)
	Document (6a)
	Document (7)
	Document (7a)
	Document (8)
	Document (8a)
	Document (9)
	Document (9a)
	Document (10)
	Document (10a)
	Document (11)
	Document (11a)
	Document (12)
	Document (12a)
	Document (13)
	Document (13a)
	Document (14)
	Document (14a)
	Document (15)
	Document (15a)
	Document (16)
	Document (16a)
	Document (17)
	Document (17a)
	Document (18)
	Document (18a)
	Document (19)
	Document (19a)
	Document (20)
	Document (20a)
	Document (21)
	Document (21a)
	Document (22)
	Document (22a)
	Document (23)
	Document (23a)
	Document (24)
	Document (24a)
	Document (25)
	Document (25a)
	Document (26)
	Document (26a)
	Document (27)
	Document (27a)
	Document (28)
	Document (28a)
	Document (29)
	Document (29a)
	Document (30)
	Document (30a)
	Document (31)
	Document (31a)
	Document (32)
	Document (32a)
	Document (33)
	Document (33a)
	Document (34)
	Document (34a)
	Document (35)
	Document (35a)
	Document (36)
	Document (36a)
	Document (37)
	Document (37a)
	Document (38)
	Document (38a)
	Document (39)
	Document (39a)
	Document (40)
	Document (40a)
	Document (41)
	Document (41a)
	Document (42)
	Document (42a)
	Document (43)
	Document (43a)
	Document (44)
	Document (44a)
	Document (45)
	Document (45a)
	Document (46)
	Document (46a)
	Document (47)
	Document (47a)
	Document (48)
	Document (48a)
	Document (49)
	Document (49a)
	Document (50)
	Document (50a)
	Document (51)
	Document (51a)
	Document (52)
	Document (52a)
	Document (53)
	Document (53a)
	Document (54)
	Document (54a)
	Document (55)
	Document (55a)
	Document (56)
	Document (56a)
	Document (57)
	Document (57a)
	Document (58)
	Document (58a)
	Document (59)
	Document (59a)
	Document (60)
	Document (60a)
	Document (61)
	Document (61a)
	Document (62)
	Document (62a)
	Document (63)
	Document (63a)
	Document (64)
	Document (64a)
	Document (65)
	Document (65a)
	Document (66)
	Document (66a)
	Document (67)
	Document (67a)

