VBASICA

COPYRIGHT
©1985 by VICTOR®,

Published by arrangement with Microsoft Corporation, whose software has been
customized for use on various desktop microcomputers produced by VICTOR.
Portions of the text hereof have been modified accordingly.

All occurrences in this documentation of the term “DOS” refer to Microsoft
MS-DOS, copyright 1983, 1984, 1985. All rights reserved.

All rights reserved. This manual contains proprietary information which is pro-
tected by copyright. No part of this manual may be reproduced, transcribed.
stored in a retrieval system, translated into any language or computer language,
or transmitted in any form whatsoever without the prior written consent of the
publisher. For information contact:

VICTOR Publications

380 El Pueblo Road

Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
Microsoft is a registered trademark of Microsoft Corporation.

MS- is a trademark of Microsoft.

IBM PC is a trademark of International Business Machines Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. VICTOR shall not be liable
for errors contained herein or for incidental or consequential damages in connec-
tion with the furnishing, performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person of
such revision or changes.

First VICTOR printing April, 1985.

ISBN 0-88182-137-3 Printed in U.S.A.

II VBASICA

Important Software
Diskette Information

For your own protection, do not use this product until you have made a backup
copy of your software diskette(s). The backup procedure is described in the
user’s guide for your computer.

Please read the DISKID file on your new software diskette. DISKID contains
important information including:

>

>
>
>

v

The part number of the diskette assembly.
The software library disk number (for internal use only).
The date of the DISKID file.

A list of files on the diskette, with version number, date, and description for
each one.

Configuration informétion (whenapplieable).

B Notes giving special instructions for using the product.

» Information not contained in the current manual, including updates, any

known bugs, additions, and deletions.

To read the DISKID file onscreen, follow these steps:

. Load the operating system.

. Remove your system diskette and insert your new software diskette.

Enter —

type diskid(cr)

. The contents of the DISKID file is displayed on the screen. If the file is large

(more than 24 lines). the screen display will scroll. Type CTRL-S to freeze
the screen display; type CTRL-S again to continue scrolling.

Diskette Information 111

v

B AANK

Preface

VICTOR BASIC Advanced (VBASICA) is an IBM PC-compatible
extension to MS-BASIC. This manual includes MS-BASIC commands
and the advanced commands.

VBASICA takes advantage of the facilities of the newer 16-bit
microprocessors. The extra capabilities provide:

» Advanced graphics

» Sound

» Disk I/O and telecommunications support

p Event trapping

Using This Reference Manual

Chapter 1 gets you started with VBASICA. Chapter 1 also covers
device-independent I/O and files; and both initialization and printer
configuration are described.

Chapter 2 discusses the character set and explains how to edit your
programs with the full screen editor. This editor provides immediate
visual feedback and speeds editing functions such as cursor movement,
insertion, and deletion. Chapter 2 also describes how VBASICA han-
dles different data types.

Chapter 3 describes all the VBASICA statements, commands, and
functions.

Chapter 4 describes the communications option, including Communi-
cation 1/0, the TTY program, and Com [/O functions.

Preface v

There are 7 appendixes and an index. Appendix A describes error mes-
sages. Appendix B lists key codes. Appendix C is an ASCII character
code table. Appendix D includes the math functions. Appendix E lists
the scan codes. Appendix F describes how to convert programs to
VBASICA. Appendix G discusses VBASICA disk 1/0.

Conventions

This manual uses the following conventions:

>

VI

The parts of the command line that you type are shown in upper-
case. You can type the command in upper- or lowercase. For exam-
ple:

A>COPY WORK.TXT B:PAYROLL.DOC

Parts of the command line that are optional or variable are shown
in lowercase,

A (cr) in the command line indicates that you must press the
Return key.

In the text, names of commands, files, and programs appear in all-
uppercase—for example, COPY or PIZZA.YUM.

In the text examples, the system prompt is assumed to be A >,
unless otherwise specified. Your system prompt might have addi-
tional characters.

VBASICA

P

Contents

Bl e e R A v
M anial CoOnVEIIONS 1. i dosisiiasnsarssstrssssrsstsommisnrasssss VIl
1. Getting Started
1ol TAErONICHION oo vainicrens s itiiaihaaiiab s n dieasessssastassn sy asatasessasss 1-1
1.2 Modes of Operationccscisissersssensesisessnerosssasssnsisnnsanss 1-1
1.3 Line Format and Line Numbers.........ccccooaniinniiciiiniiienin: 1-2
B T E e i e o RN Nt o R e i 1 Sy e G e 1-2
(o cElea T i L s L e e e e 1-5
1.5.1 File Specificationccoceiairssersssssesssiasusensasssians 1-5
150 PatBIAINCS ... oo esererssisssisesiodisonsss omuaRavss st ey ssnsnnson 1-7
1.6 Redirection of Standard Input and Standard Output...... 1-10
1.7 Graphics, Screens, and Printers ... 1-12
177:1 - The Color AIDULES cvivcvvsicrniiinesmvnndrranmnnnssnzsssisitins 1-13
L T O O S 2 s seasssiuninsiontassiapdm o bbanssssasesonstnness 1-14
1.8 EVEnt TrapDINE. .coceerieerenreeeiiieissnnsasssnsesiasissniss s s 1-15
1.8.1 Event SpeCifierscccociiinmremminsiemmnreisicisinisineisneianes 1-16
1.8.2 Controlling Event Trapping......cccocevveaeecerieniininians 1-17
1:8:3 -Additional Controls ..o il 1-18
2. Data Entry and Editing in VBASICA
VT O RATACTIEE SO co coianiss sivaisismmsninas inspimsnssbind Lo sy bagahnns s ks smtits 2-1
2.1.1 Special Characters and KeyS......cccoccoimmiinnicinnene 2-1
213 Control CHataclers.oviisssuimnsnmas iastisiasithis 2-2
2.2 The Full Screen EditOr......cccccveiiiiiimmmimiinionsianesisianmeses 2-3
2.2.1 Writing Programs.......ccccooeeiiniinnmmnimsmiinisninse 2-3
2.2.2 Editing PrOGIamS...c.cccvivmerieeriesssnssnesiesisinessinnniannne 2-4
2.2.3 Function KeyS.....c.ccceesesreeriesssivansisnsionsisssmsannsisisaens 2-5
2.2.4 Syntax ErrorS.....ccoooceinesmianeniniininsinnnsiines 2-9
Contents VII

bl ARRBRANIR s s R e R R el 2-9
2.3.1 Single- and Double-Precision Numeric

e R BB P S A 2-11

AR T R I o S AL RS T 2-11

2.4.1 Variable Names and Declaration Characters........ 2-12

R SR VatilbIRR ... coss oo ot it it 2-13

2.4 37 -Space REqUITEIEHTS.o st b 2-13

i 5T I SR RN N SN 2-14

2.6 Expressions and Operators... .. o iaigl 2-16

26,1 Avithroetic ODerstons ... siiiiatsmivablih 2-16

202 - Relational DYnesatons. ... oo il e i i o 8 2-19

2:6.3 . 7“Logical Operatoisiut ais diianaibabngbs b 2-20

2564 Functonal ODEiatons.......emmibauissboiiiei, 2-24

2050 ISHTING OPRTATIONS . oiive e evssoiaribor s sibel el o 2 2-24

2k OPUE BAUIDE .o T e S LB 2-25

PR BT L D (o SR S RN 0T AR i S 2-26

g g X B R N S B SRR NS u oy I B el - S 2-26

B3 - B MRENEES .o i s it AR e b 2-27

3. VBASICA Statements, Commands, and Functions

P PURCHIGIL,, oo iiivmiipsisssiisnnaiibobi it e o= 3-2
ST O N A SIS 5 S S R g (o M R 3-3
P] G0 100 0 1 R I SO LS e 0 e T R 3-3
ALTTO O i it bbb et sdis 3-4
BEEP STACrfent . (.o o s s v i s o 3-5
BLOAR COMBRNI. 2 o oriiovmiiinissisin e e e 3-6
VRS LOBRIE. o cisimnisssisiosnisssis P A B 3-7
LR BT Cord e e T s 39

LT FRIRON Lo ittt i i 5 o s B 3-15

CHAIN SEBBIREHE. ...t b i g 3-15

LM SRIRIE . il S s i e R 3-17

LRI POl .oomme e i s s s b i 3-18

CINT FUDREON 5o, ammsommmmsnnsirbin s P il o3 e 3-19

VIII VBASICA

CIRGCLE - SIaIEMENT ot i mis Wi el 3-19

CLEAR SIaterient .o vt iuboihin st vbiibebisi s sriasses vwsson i 3-22
C L ONE S tatement. i aviinsarsinssmvessstsesiomn i svinsissin mesbrnnss 3-23
R s v L AR RRRRL SO & L SR MR o <15 okt o S A A 3-24
R LS L 10 197 1) SRS e M A i o LA ot L e e 3-24
N S MER e i i S s e 3-29
CONINIDIN SRS St S s s R s 3-30
CONT-Command.:.huanmasiimaish e e e 3-31
COS PUNTHON v s i s v sy sh ST evoaon voveos s 3-32
CSNG FONCHON i cns i bbbt vobis sTam i avisis 3-33
CRRIEN: FuTICTION coa vt vsberyaoe s o sob it s v et ooms e mee 3-34
CNL AR o OV FUBCHODE . i i i el mesiiesea 3-35
B ¥ R FEN U1 1 o] M Ry e AN UL\ D L MR i T e e e 3-36
DATES Variable and Statemienti i i iornrassssosfosissaesss 3-38
PEEENSEEMBOL . by n vl e wwdediasts 3-39
DEE SEG SIEMENT . oo hiviibis s immmeisisaviimisidamissisens 3-41
B EE D SIaterment. i i i donis oo sisge 3-42
{0 S B RS SR 517 s e (o R R R LA S ORI S - bt bk 1) 3-43
) A B B 0T 48 13 Vi e e A A A VAP s y s P B 3-44
FHNV-Btetetaefit & o s v s v nates 3-45
DRAWESTATCITIONT i s s s e T T s ol e 3-46
BRI Command ..oom s bbb ikttt v 3-49
ENE BEAEIMIERT . b isviaimaiaiaiini o mathon s st s i sisianma as trics s s a8 3-50
B TR O B b AR I s s e s e TS AR T e e 3-51
BN RN BONCHON ... oo s ot St e 3-53
EOEBURCHON - i i i i s S e e T s e 3-54
ER A S B S eI v s s L i s ol pa by s abon o e 3-55
ERDEV and ERIIEVE FUnCtionS . i sivisanins soasnbusens 3-56
BR R and ERL FUnetions it s msriisessmasinsiess foris fnmees 3-57
BRBGIR SIRIOIHBIE o kb i hens ar s v s s oo o ot S i 3-58
B B Ol s e e e 3-60
FIEL D SERINEII s tinviih msiins ey saioevi ot st bevvais 361
B ES StaterBmt. o vt o bussavinn in s sk ks s sessn sxh fhs v s soes 3-62
e DT T s i e s g T T e o s ST 3-64

Contents IX

FOR . NEXT Statement oo i 3-65

EREFRUHCHOH 0 v nimv i s i i i 3-67
GET Statement for File O oociciiiiiiiimmims s niasiimon 3-68
GETDand PUT Staterients for COM ..o i i 3-69
GET and PUT Statements for Graphicscoiviivniiini 3-70
GOSUR RETURN BMAtement . . cvinioiciin iy 3-74
GERIORIE Nt 3-75
MRS DUBCHEI .. o i e s bl e 3-77
| e P o o1 COC O St o S e R 3-78
INKEYS Varibles oo vniiniiinaianaimminsincain 3-80
INPEURGHON . o vt bdahiilh sena e 3-81
ENBLEE SEement oo ni s st i 3-82
INEULEE Statemient o ios aiiiiimivnn s i 3-84
TNPLIT S PUBCHON . sonaimreesiissisbs o asiios i mtinaniss ot e i 3-85
PNSTR BURCHON ... vt i i s o e 3-86
ENT Bunchion s s ai o nanmsns s g 3-87
IOCTL Statement ... ovoopo g atecsesiennsioseymngosss i g Sespt 3-88
1I0CELEPhdAdfent). V. 1GCLOL S QLD LL Ll 3-89
KEY Satement . . iaassininionbiina i i abansniins 3-90
EEY (n) SAtement. ... ccirmsivmmsenmsessivsismmibmmyiiiipii b one 3-93
KILLCoMMAHA i bt e 3-94
LEETS FUBCHON i s am v ia e o 3-95
EEN Funetion ..o dimemn it b s mns 3-96
EET Statenientoni i inmdg v i bt iss iy 3-96
LINE STMEMBAL ..o o iiinsiisiinmavrsiiieniibsabb b b oo soi o 3-97
LANEINEE T SIAtemBnt. ..ot s oin sk biibins deniog 3-99
LINE INPUES SEEEil . eiinninnnivmsnioat v 3-100
LISE Command ... oo miivins o niital i nii, 3-101
ELIST Command.iimiiamiininnsosintn i 3-103
LOAD Command ...t iiidais mo s calim 3-104
D S5 ST 10111011 1F Coomet COUMMIEANE MR, ' S MM ct S B s Dot 3-105
LOCATE StAteent o vvmnmnaneniasiiiansadsiiabiot 3-106
LOF BPUNcHON icaediins mmmmsismmminms i i 3-108
EAKG PODCHOMN G cimiiavossnmssmn mmssivssseimmmir i i st s o isesit 3-109

VBASICA

B B T TRV) s W e O N RSN e e 1 s e 3-109

LPRINT and LPRINT USING:Statements.........ocuuwaisosisasn 3-110
SE Eandt REET SIAIETRETIES 00, e onsisrie ST broh oDt 1o 3-111
NIERGE COMMAN .00 onsasonsnncsssossssmmssssobassnssss i asassnsionios viog 3-112
MIDESEREMENtoiniiimmannanebnmdm i el s 3-113
MEDIR- ComMana .o onsmsimasims s siotis i ain s Gtinss 3-114
MKI$, MKSS$, and MKD$ Functions and Statements............. 3-115
INABAE COMIIRNIL. .. . 5 [isssebsusiassstopeiaiate s SR T A D 3-116
I G a7 7 £t 1o SRR RNG WALIES L SR BN e 3-117
6T B0, 511 012 (1 RS e VLo Sy S TR T 3-117
OINCON SIATBIMIBIL v iiidninimsian i st b e 3-118
ON ERROR GOTO StAtement ..o v issuissessoss borssavisiaissssnssis s 3120
ON...GOSUB and ON...GOTO Statements.....cciniaieiseriebibe 3-121
N EY N SEAETHRAL o coviinnnisi e fors v ainsass swsves FoRebiesonaa ol 3-122
NP L AN STRRTARIT i e ssrssmamassiassnins by sss S s der s s 3-124
ON TIMER STATEIIEHL ... coenreersrnssrsnsssssasisssrssssssnsisssiiorssaiaiisenin 3-126
OPEN SEAIETENL . .o s s ks et ot 3-128
OPEN COM SHIEMENT o oo iniimas s i s s R e 3-130
Option Base StAteMBIL . oot s fabsst s 3-134
B T SEA OB .ol o srmavesspesissispsad shnss snsion o A B s 3-135
| 0 B v Ul) LR e WIS S BRI AR o o s B 3-136
BRAY STATSMBIL ... oo saismitis s irsismssin i s s 3-139
PEAY/(N) FUNCHONocoooiniamins g s n b i 3-141
PLAY ON, PLAY OFF, and PLAY STOP Statements............ 3-142
PR D BURCHDN v i s smanaiasio oot ey b S S 3-143
PO B UNOIION v oo s insssessssisinsomasioi ioridiommas o er e R P AT 3-145
PR B SIateent, ... o oromsminniinrssessrssisnmi S s i m et 3-146
POS FUneton. . srnin aansimsiaim soti s Salsoma i 0 3-147
PRESE L SIATSIHBNt .00 bbb abssiss e ikl bl o B it b 3-148
PRINIESEOIHONT . ciinaiiasin ool et b ok s Bt riyed 3-149
PRINT UUSING SIAISHIGHT. .. o oiiicinermnsrmiopsrsss s sssnasaiobasnsisisiss 3-151
PRINT# and PRINT# USING Statements............cccvcueeecciveneens 3-156
PEET STATEIMETIE i iiaissinn somvioiisansis s sonisssdas Vi sdsabann i vbodon voehnd 3-158
RANDOMIEZE StAIement . ., v osmsvssssoisisb iismra 0 s it senss 3-159

Contents X1

READ Statementcocveererernneneens SRR RN I 5.~ T4 3-161

REM SGESent oo i i adi ot sy, S 3-163
RENUM.-Cotttiand ..o i i st 47 3-164
RESET Commiant oo s s bbb it o 3-166
RESTORE StateIment . ..o v s i i 3-167
BESUNE Statemiento doimsiviiisionsssoids bbb o b 3-168
5 B D) T o | N s I 5 RN) S 3-169
BMIMR IC ORI .o s tommssisisinnensssnssaisi it i i 3-170
BEINEWRUREHON s oo oo G o 8 3-171
RN Cotmamid ..o mmmmapmnnbmandana s oL R s 3-172
SAVEACoMMantd. £ niniinil S R 08 L LT 3-173
SCREEN-Btatement . .cmmies adiiifhaatbidedisad. 3-174
SEREBN-EINGHON, ... i s v dhtecinba i e s i d 3-176
SOMNEBHEHON sttt s a s s f et 3-177
SHELL SUAOIMBHL e aroninmsaisionsiri st s sl L 3-178
SIN Funetion o a1 3-180
SOUND: SIRIent .o e i 3-181
T W oG T T YR SRRSO il o bk et LY, STl 3-182
SPC EHRCHON. Suvimamiivein: vl il a s e o 3-183
SOBCBUBSIIING oot i e SR 3-184
STGOBBEEIMBNtG 0. e e T ey e 3-185
BERE DRI . ot s oo o o 3-186
STRIMGS Pustetionamuimnsmismomiamisisaiiads i s 3-187
SWARStaterhete L Lol b cadihiailina Sk Ldnia s ket 3-188
SYSTENT COMIRENG . s e it i b i S e 5 L 3-189
TAB BONCHON v mriinmnsvims s somonssikenrisns s bismsi i sy 0 3-189
TANEODESHO v s e st e, 2 4 3-190
TIMES Function and STIBMent 1. ..ottt i 3-191
TIMER ON, TIMER OFF, and TIMER STOP Statements 3-193
TRON/TROFF COmMandsitainsiorstnnmiisom bbb b bk 3-194
VSR Futiehion st e i i s vz b 52 el 3-195
VAL FUREHON Gttt et it e 3-196
VAREPER BFuneton:a. st imsni it st 3-197
VABPTERS FUHCHON v tuvenniiymnbsensinssnstnfisestomm i oirons oo e s 3-200

XII VBASICA

——

VIEW StStement. ool e vt st gk, 3-201

VIEW BRINT Statepient o i iiiiibviinnisinii s dmmeisr iy 3-204
WAL Statement .. v el b sl G 3-205
WHILE SWEND Staeraent . o i it misingi 3-206
WID PR SEMBMENE . e i i e 3-207
IRV ISIStament. 0 e i e 3-209
WERITEStatement ... i i an i idmahnas, 3-212
WRITE# Statement .. .o iiimnnamammbensn i cnnes 3-213
4. VBASICA and Communications
4.1 Commupication Ooioananiiniia sy 4-1
4.2 The TTYPrOBAIN ... oo i i a i iiticinnn s 4-2
43 ~Notesonthe TI'Y Program. ... 0o o 4-3
44 The COM O FUnctions ... luiiviiaindinaiean 4-6
APPENDIXES
A Error MEessages .0.x Fdopiespm e e S A-1
B Eadmiidd Coudes™) MYt M e B-1
- AStliCharacter Coden .00 L C-1
13 Mathematical Fanctions.... ... e sl D-1
E. Kevboatd Scan-Undes.....oiviviviniirmminmionissin E-1
EF: Converimg Progrants to VBASICA ... iin F-1
(r YBASIHCA Disk D .ciiiiiiviniilumaimmsisistinssine G-1

Contents XIII

TABLES

I#l: Coordmatesdor Color Seisein. ciwnmimris Shnnmiis [i 1-14
1-2: Midscreen Coordinates for Color Screen..............ccoocevveeeenenn. 1-15
2=1%. SPECIAECHAPATIRESoscrnsansrnmen s o susovicsnsnmnes omssbusapinsids assemsirs 2-1
2-2: VBASICA Function Keys........cc.ccocveevennnn. B A R e 2-6
2-3: Funiction Explanations ...csveasamaniivimiiti i an 2-7
2-4: ‘Space Requirements (In BYIES). ..o o eessiossebonnossersnonssiisbabaorins 2-13
2:50 AT BIC ODPETATITS. .. ccorserssnrssmmsss ot e Ea el et et 2-16
256; Aleebiaic BXDICSRIONS, in ot it e e 2-17
2-7: VBASICA Relational Operators......cceeivevveeesiieseiissiiesssassorsssns 2-19
2:87 LogIcal OPerationS . commi i i s e i e s 2-20
3e1s CORNE O COIOE ST ... o smenessmnisnspmsinsbabodiiinenmins e et 3-25
3-2: Foreground/Background Combinationsc.occeevvevvveernnenn.. 3-26
330 Movement: ComMands. ... munsmmasnummiism st 3-47
3=4u Prefixesito Movement COMMANTS e dnimii i L 3-48
3 DI COMIMBRTE .. o it amemisilt bbb s Lo e r o S R 3-139

X1V VBASICA

Chapters

1. Getting Startedccvismininsmransimnissesssseniemmininsisssnsness s _
2. Data Entry and Editing in VBASICA ...,
3. VBASICA Statements, Commands, and Functions..........
4. VBASICA and CoOmmMmUNICALIONS ..ocovvieiinirsmesseessoniuinannins
A, BITOT MESSALES .oovvverereenreirisnisssrerinnmmessiuessionsnsssnnersssssassnss
B. Extended COgescocvuvurrrseissssssresssissnnissssssninsssassssssisnansissss m
C. ASCII Character COodescoccvisrunrerrnsaarsnessssisssssasoserassanasss
D. Mathematical FUNCHIONS......c.coveiinmreiniieemnnsnsieinieninnnes
E. Keyboard Scan-Codesoevieeminiiniminm
F. Converting Programs to VBASICA ...
G. VBASICA Dk 110 ..oiivcnisismsmimmnmmivuisssssnsesammnssineopeptes st va

Chapters XV

o

VBASICA for the PlusPC

You can run VBASICA on your PlusPC either in I mode or in V
mode. VBASICA is similar in each mode except that several enhanced
features are implemented in V mode only. Thus, you can write a pro-
gram for one mode and run the program in the other mode with few
changes to the program.

The information contained in the VBASICA manual is for both
modes. This beginning section describes the differences between using
VBASICA in I mode and using VBASICA in V mode. It also describes
the enhanced VBASICA features that you can use only in V mode.

At the end of this section is a list of some VBASICA features that are
documented in the manual but are not implemented in this version of
VBASICA.
This section contains the following information:
P Running VBASICA in V and I modes
» The enhanced features for V mode:

—the LCOPY statement

—the VBCONF program

— graphics screen types and modes

» Features not implemented in this version of VBASICA for the
PlusPC

VBASICA for the PlusPC |

Running VBASICA in I Mode and in V Mode

On the PlusPC, a loading program loads VBASICA. If you are in |
mode, the loading program loads the VBASICA designed for I mode.
If you are in V mode, the loading program loads the VBASICA
designed for V mode. To run the loader, type:

BASICA(cr)

Note: An MS-BASIC binary file must be saved as an ASCII file before
you can use it under VBASICA on the PlusPC. After you save the
ASCII file, you can load it into VBASICA. Because an ASCII file loads
more slowly, you can save the file from VBASICA as a binary file.

Enhanced Features for V Mode

This section describes the enhanced features that you can use in V
mode: the LCOPY statement, the YBCONF program, and graphics
screens and modes.

2 VBASICA

LCOPY Statement

FORMAT:

LCOPY

PURPOSE:

Dumps the screen display to a graphics printer.

REMARKS:

With the LCOPY statement, VBASICA can output both text and
graphics to a dot matrix printer. VBASICA supports seven printers;
you can also define your own. Before you can use LCOPY, VBASICA
must be installed for the printer you are using. Thus, a VBASICA
program—VBCONF.BAS—is included on the distribution diskette to
install VBASICA for you. VBCONF is described in the next section.

Before running this program, you should back up your master diskette

and work from a copy.

After

VBASICA is configured, LCOPY can use only the printer

specified in the sign-on message.

EXAMPLE:
10 SCREEN 2 'set up for some graphics
20 KEY OFF 'turn off the function key display
30 LS 2 'clear the screen
40 FOR RADIUS = 20 TO 200 STEP 10
50 CIRCLE (400,200),RADIUS 'draw some graphics
60 NEXT RADIUS
70 LCOPY 'copy the screen to the printer
80 END

VBASICA for the PlusPC

The VBCONF Program

To run the VBCONF program from the operating system, enter the
following command in response to the operating system prompt:

BASICA VBCONF(cr)

Or from VBASICA, enter the following command from the operating
system prompt:

RUN “VBCONF"(cr)
The program displays the following menu choices:

ABORT - Abort this program without changing VBASICA.
VICTOR Printer 6010/6020

VICTOR Printer 6015/6025

VICTOR Printer 6070/6075

Tally Printer (160s/180s)

Tally Printer (140)

C. Itoh Printer (8510A, 8510S/15504, 15508S)
Epson MX-80/MX-100 (with GRAFTRAX)

Epson FX-80/FX-100

Okidata Printer (U84 Only)

No Printer - disable LCOPY

Use the cursor arrow keys to move the reverse video bar up and down
over the menu. When the choice you want is highlighted, press Return.
The VIBASICA.XEC and VIBASICA.XEC files on the default drive
are modified and you return to the operating system. If you choose to
ABORT, you return to VBASICA. If you choose “No Printer”,
LCOPY returns an “Illegal function call” error when you try to use it.

4 VBASICA

The VBASICA sign-on message displays the name of the installed
printer. Rerun VBCONF any time you change printers.

You can install a printer not listed in the menu by modifying the
VBCONF.BAS source code. After reading your printer’s manual and
the comments in the program, you should be able to configure
VBASICA for most printers that support bit-mapped dot matrix
printing.

VICTOR dot matrix printers have special programs built into the
hardware (“firmware”) that make the printers run faster. These pro-
grams also correct the aspect ratio between the printer and the screen
so that circles are displayed as round and not slightly oval.

VBASICA for the PlusPC 5

Graphics Screens and Modes in V Mode

VBASICA can create medium- or high-resolution graphics on the color
screen or on the standard screen. If your computer has a color card
you can put color and black-and-white images on an attached color
screen. VBASICA in V mode supports three screen types:

» Your standard screen

> A software-simulated IBM color screen displayed on your standard
screen

» The color screen, which requires a color screen and the VICTOR
IBM-compatible color card

From VBASICA, you can use the SCREEN statement to change the
resolution mode. There are three modes:

> Mode 0: A text-only video display mode
» Mode 1: A medium-resolution mode for graphics and text

» Mode 2: A high-resolution mode for graphics and text

You can access each screen mode and type with the SCREEN com-
mand. As the operating system loads VBASICA, it checks if a color
card is installed and if the bit map is allocated. If a color card is
installed, VBASICA appears on the color screen. If not, VBASICA
comes up on the standard screen. If the bit map is not allocated, the
monochrome graphics screens cannot be accessed. (See screens 42, 61,
and 62 in Table 1.) To change between screen types, use a type/mode
number, Table 1 lists all possible type and mode combinations.

6 VBASICA

Table 1: Screen Type and Mode Combinations

GRAPHICS COLOR, B/W,

SCREEN ROWS COLS PIXELS COMMENTS
Color

20 25 40/80 No graphics Full 16 colors, 8 or 4 pages,

depending on width

21 25 40 320X 200 4 colors, medium resolution

22 25 80 640 X 200 2 colors: black and white
PlusPC

40 25 40/80 No graphics PlusPC text mode

41 (Not available; use screen 61)
42 23 80 400 X 800

IBM Monochrome

60 25 40/80 No graphics
61 25 40 320 X 200
62 25 40/80 640 X 200

PlusPC high-resolution screen

IBM text mode
4 shades, medium resolution

Simulated IBM high-resolution
monochrome mode

After you select a screen type, the mode numbers (0, 1, and 2) work as
documented in the SCREEN statement description. Thus, the follow-
ing command switches to the PlusPC text mode:

SCREEN 40

If this command is followed by the command:

SCREEN 2

the PlusPC high-resolution screen is selected. Similarly, the following
command loads the color high-resolution screen:

SCREEN 22

VBASICA for the PlusPC

To switch to the color medium-resolution screen, enter the following
command:

SCREEN 1

When you want to change screens you can specify the full mode and
type number or just a mode change within the current type.

If you run programs developed under VBASICA and have a color
screen, issue the command SCREEN 20 before you start to run the
color and black-and-white programs. If you do not have a color screen,
enter the command SCREEN 60 to simulate the IBM color on the
standard screen. Programs written specifically for the PlusPC can take
advantage of its higher resolution if you use the command SCREEN
42.

The Color Attributes in V Mode

You can specify a color attribute with the graphics statements PSET,
PRESET, LINE, CIRCLE, PAINT, and DRAW. The range is 0 to 3.
These color attribute numbers are distinct from the numbers that refer
to actual colors; the latter are used only as parameters in the COLOR
statement.

On screen 61, 0 selects black; 1, 2, and 3 select varying shades of white.

In Mode | on the color screen (screen 21), 0 selects the background
color; 1, 2, and 3 select foreground colors.

In Mode 2 (screen 22), 0 or 2 selects black; 1 or 3 selects white.

NOTE: The COLOR statement does not affect any graphics screen
except screen 21.

8 VBASICA

Coordinates

The drawing statements PSET, PRESET, LINE, CIRCLE, GET, PUT,
and PAINT require you to specify screen locations as pairs of (x.y)
coordinates. The format is (<x>,<y>), where <x> and <y>

are numeric expressions.

The screen coordinates are shown in Table 2.

Table 2: Screen Coordinates

X y
TYPE/MODE (HORIZONTAL) (VERTICAL)
61,21 0-319 0-199
42 (standard screen) 0-799 0-399
62, 22 (color screen) 0-639 0-199

Point (0,0) is the upper left corner.

When vou clear the screen with either the SCREEN statement or the
CLS statement, the graphics cursor is set to the middle of the screen.

Table 3 defines the midscreen coordinates.

Table 3: Midscreen Coordinates

SCREEN COORDINATES
Mode 21, 61 (160,100)
Mode 42 (400,200)
Mode 22, 62 (320,100)

VBASICA for the PlusPC

Features Not Implemented for the PlusPC

The following are not implemented in this release of VBASICA:
» The PAINT statement does not support tiling.
P The LINE statement does not support the style attribute.

» The PLAY statement does not support the incrementing and dec-
rementing octaves option.

» User-defined trappable keys are not supported. Only keys 0 through
11 can be trapped.

» The MS-DOS PATH command and the use of pathnames in file
specifiers are not supported.

The following statements, commands, and functions are not supported

in this release of VBASICA for either mode:

CHDIR command
ENVIRON statement
ENVIRONS function
ERDEYV function
ERDEV$ function
IOCTL statement
IOCTLS$ function
MKDIR command
ON PLAY statement
ON TIMER statement
PLAY OFF statement
PLAY ON statement

10

PLAY STOP statement
PLAY (n) function
PMAP function
RANDOMIZE statement
RMDIR command
SHELL statement
TIMER OFF statement
TIMER ON statement
TIMER STOP statement
VIEW statement

VIEW PRINT statement
WINDOW statement

VBASICA

Getting Started

1.1 Introduction

This chapter describes VBASICA’s special features, such as graphics,
device-independent 1/O, and event trapping.

1.2 Modes of Operation

When VBASICA is initialized, it types the prompt “Ok.” “Ok” indi-
cates that VBASICA is at command level—that 1s, it is ready to accept
commands. At this point, you can use VBASICA in either of two
modes: the direct mode or the indirect mode.

In the direct mode, line numbers do not precede VBASICA statements
and commands. VBASICA executes them as they are entered. Results
of arithmetic and logical operations can be displayed immediately and
stored for later use, but the instructions are lost after execution. This
mode is useful for debugging and for using VBASICA as a calculator
for quick computations that do not require a complete program.

Use the indirect mode for entering programs. VBASICA precedes pro-

gram lines with line numbers and stores them in memory. You exe-
cute the program in memory by entering the RUN command.

Getting Started 1-1

1.3 Line Format and Line Numbers

Program lines in a VBASICA program have the following format, with
square brackets indicating optional information:

nnnn VBASICA statement [:VBASICA statement...](cr)
You can place more than one VBASICA statement on a line, but each
statement on a line must be separated from the last by a colon. A

VBASICA program line always begins with a line number, ends with a
carriage return, and can contain up to 255 characters.

1.4 Initialization

FORMAT:

BASICA [<filename >] [/F: < number of files >] [/S: <Irecl >]
[/C: < buffer size >] [/M: < highest memory location >]

REMARKS:

Load and execute VBASICA by typing the following command at the
DOS command line prompt:

BASICA

Upon loading, VBASICA responds with the banner:

GW-BASIC 2.01

(1) Copyright Microsoft 1983, 1984
nnnn Bytes Free

Ok

1-2 VBASICA

You can alter the VBASICA operating environment somewhat by
specifying option switches following VBASICA on the command line:
these switches are described in the next paragraphs.

< filename > The filename of a VBASICA program. Files and
filenaming conventions are described in the next section. If
< filename > is present, VBASICA proceeds as if you gave a RUN
” < filename > 7 command after initialization. VBASICA assumes a
default file extension of .BAS if none is given. If you use this form of
the command line in VBASICA programs, you can run the programs
in batch files. Such programs must exit with the SYSTEM command
so VBASICA can execute the next command in the batch file.

/F: < number of files > If present. sets the maximum number of files
that can be open simultaneously during the execution of a VBASICA
program.

Each file requires 62 bytes for the File Control Block (FCB) plus 128
bytes for the data buffer. The data buffer size can be altered via the /S:
option switch. If the /F: option is omitted, the number of files defaults
to 3.

/S: <Irecl > If present, sets the maximum record size allowed for use
with random files. Note: The record size option to the OPEN state-
ment cannot exceed this value. If you omit the /S: option, the record
size defaults to 128 bytes.

/C: < buffer size > If present, controls RS§-232-C communications. If
/C:0, RS-232-C support is disabled. Any subsequent I/O attempts
result in the “Device Unavailable” error. Specifying /C: <n > allo-
cates < n > bytes for the receive buffer and 128 bytes for the transmit
buffer for each port. If you omit the /C: option, 256 bytes are allocated
for the receive buffer and 128 bytes for the transmit buffer of each card
present.

Getting Started 1-3

/M: < highest memory location> When present, sets the highest

memory location that VBASICA uses. VBASICA attempts to allocate

65K of memory for the data and stack segments. To use machine

language subroutines with VBASICA programs, use the /M: switch to

reserve enough memory for them.

NOTE: < number of files>, <lrecl>, <buffer size>, and

< highest memory location > can be decimal, octal (preceded by

&0), or hexadecimal (preceded by &H).

EXAMPLE:

Use all memory and 3 files; load and execute PAYROLL.BAS:
A>BASICA PAYROLL

Use all memory and 6 files; load and execute INVENT.BAS:
A>BASICA INVENT/F:6

Disable RS-232-C support and use only the first 32K of memory:
A>BASICA /C:0/M:32768

Use 4 files and allow a maximum record length of 512 bytes:

A>BASICA /F:4/S:512

Use all memory and 3 files; allocate 512 bytes to RS-232-C receive
buffers and 128 bytes to transmit buffers, load and execute TTY.BAS:

A>BASICA TTY/C:512

1-4 VBASICA

1.5 Files

A file is a collection of data not stored in the computer’s random
access memory (RAM). Instead, the data is stored on disk or some
other device. Several commands save and retrieve file information,
such as SAVE, LOAD, and LIST.

VBASICA supports the concept of device-independent I/O (input/
output) files. Consequently, you can treat any type of input/output as
I/O to a file—whether you are using a diskette or a printer, or whether
you are communicating with a device.

1.5.1 File Specification

The physical file is described by its filename and specification., or
filespec. The filespec can include pathnames for VBASICA 2.0 and
later versions. A simple filename is a sequence of characters that can
optionally be preceded by a drive designation, be devoid of back-
slashes, and be optionally followed by an extension.

The filespec is a string expression of the form:
[< pathname >][< device >][< filename >]

< pathname > is the sequence of directory names as described in
Chapter 1.5.2.

Getting Started 1-5

< device > 1s a physical device:

KYBD: Keyboard Input only
SCRN: Video Display Output only
EPT1: First Line Printer 4

EPT2: Second Line Printer h

LPT3; Third Line Printer "

COMI1: RS-232-C Port A Input/Output
COM2: RS-232-C Port B o

A:to O Disk Drives s

< filename > is the name given to the file. The name conforms to the
VBASICA filename conventions and consists of two parts separated by
a period:

< filename > [. < extension >]

The filename can have from 1 to 8 characters and the extension from 0
to 3 characters.

VBASICA uses a default extension of .BAS on LOAD, SAVE,
MERGE, RUN, CHAIN, BLOAD, and BSAVE commands if no
period appears in the filename and if the filename has fewer than 9
characters. If you do not specify the device, the current VBASICA
default disk drive is assumed.

File specification for communications devices differs slightly. Replace

the filename with a list of options specifying such items as baud rate
and parity.

1-6 VBASICA

The following statements, commands, and functions support device-
independent 1/0. For more information, see the descriptions in
Chapter 3.

BLOAD INPUT$ LPOS PRINT USING
BSAVE KILL LPRINT PUT

CHAIN LINE MERGE RESET
CLOSE LIST NAME RUN

EOF LEIST OPEN SAVE

FILES LOAD OPEN COM WIDTH

GET LOC POS WRITE
INPUT LEOF PRINT

1.5.2 Pathnames

A pathname is a sequence of directory names followed by a simple
filename. each separated from the previous one by a backslash (\), and
no longer than 63 characters. If a device is specified, it must be
specified at the beginning of the pathname. The pathname format is:

[<d>:][\] <directory >\] [<directory > \...][< filename >]

Gerting Started 1-7

ROOT

WORK BIN USER ACCOUNTS PROGRAM

BOB SHELLY MACK

Text.txt FORMS Text.txt

1A

Sample Hierarchical Directory Structure

In the structure shown above, directories are in all uppercase letters.
The two entries named Text.txt and the entry named IA are files.

If a pathname begins with a backslash, DOS searches for the file begin-
ning at the root (or top) of the tree. Otherwise, DOS begins at the
user’s current directory, known as the working directory, and searches
downward from there.

\USER\SHELLY\TEXT.TXT 1is the pathname of Shelly’s Text.txt
file.

When you are in your working directory, a filename and its cor-
responding pathname may be used interchangeably. The following are
some sample names:

\

indicates the root directory.

1-8 VBASICA

\PROGRAMS
Sample directory under the root directory containing program files.

\USER\MACK\FORMS\IA
A typical full pathname. This example is a file named IA in the
directory named FORMS belonging to a subdirectory of USER
named MACK.

USER\SHELLY
A relative pathname; it names the file or directory SHELLY in sub-
directory USER of the working directory. If the working directory is
the root (\), it names YUSER\SHELLY.

Text.txt
Name of a file or directory in the working directory.

DOS provides special shorthand notations for the working directory
and the parent directory (one level up) of the working directory:

. (one period)
DOS uses this shorthand notation to indicate the name of the work-
ing directory in all hierarchical directory listings. DOS automatically
creates this entry when you make a directory.

.. (two periods)
The shorthand name of the working directory’s parent directory.

If you type the following command, DOS lists the files in the parent
directory of your working directory:

DIR ..

If you type the next command, DOS lists the files in the parent’s
PARENT directory:

DIR ..7..

Getting Started 1-9

Working with Pathnames in VBASICA

Not only can VBASICA provide the ability to access files from other
directories using pathnames, but you can also use it to create, change,
and remove paths, using the VBASICA commands MKDIR, CHDIR,
and RMDIR. For example:

» The VBASICA statement MKDIR "ACCOUNTS” creates a new
directory, ACCOUNTS, in the working directory of the current
drive.

» The VBASICA statement CHDIR “B:EXPENSES” changes the
current directory on drive B to EXPENSES.

» The VBASICA statement RMDIR “CLIENTS” deletes an existing
directory, CLIENTS, as long as that directory was empty of all files
with the exception of “.”” and *..”.

For further information on using paths in VBASICA, see the CHDIR,
ENVIRON, ENVIRONS$, MKDIR, and RMDIR statements in
Chapter 3.

1.6 Re-Direction of Standard Input and Standard
Output

VBASICA can be re-directed to read from standard input and write to
standard output by providing the input and output filenames on the
command line:

BASICA [program name] [< input file] [> output file]

Note that the characters “ <™ before the input file and ** > > before
the output file are literally those characters, and not angle brackets
indicating a required argument. If two greater-than characters (> >)
appear before the output filename, the output is appended to that file.

1-10 VBASICA

RULES:

L.

N B W

When redirected, all INPUT, LINE INPUT, INPUTS, énd
INKEY$ statements will read from the input file.

. If the program does not specify a file number in a PRINT state-

ment, that output is redirected to the declared output file instead of
the standard output device, the screen.

. Error messages go to standard output.
. File input from “KYBD:" still reads from the keyboard.
. File output to “SCRN:" still outputs to the screen.

. VBASICA continues to trap keys from the keyboard when you use

the ON KEY(n) statement.

. Pressing CTRL and PrtSc simultancously does not cause 0 L s

echoing if standard output is redirected.

. Typing CTRL-BREAK causes VBASICA to close any open files,

issue the message “Break in line <line number>" to standard
output, and exit VBASICA.

. When ‘input 'is redirected, VBAS[CA continues 'to_readsfrom this

source until it detects an end-of-file character. This condition may
be tested with the EOF function. If the file is not terminated by a
CTRL-Z or if a VBASICA input statement -tries to read past end-
of-file, then any open files are closed, the message “Read past end”
is written to standard output, and VBASICA terminates.

EXAMPLES:

BASICA MYPROG > DATA.OUT

Data read by INPUT and LINE INPUT continues to come from the
keyboard. Data output by PRINT goes into the file DATA.OUT.

BASICA MYPROG < DATA.IN

Data read by INPUT and LINE INPUT comes from DATA.IN. Data
output by PRINT continues to go to the screen.

Getting Started 1-11

BASICA MYPROG < MYINPUT.DAT > MYOUTPUT.DAT

Data read by INPUT and LINE INPUT now comes from the file
MYINPUT.DAT and data output by PRINT goes into the file
MYOUTPUT.DAT.

BASICA MYPROG < \SALES\JOHNA\TRANS >> \SALES\SALES.DAT

Data read by INPUT and LINE INPUT now comes from the file
\SALES\JOHN\TRANS. Data output by PRINT is appended to the
file \SALES\SALES.DAT.

1.7 Graphics, Screens, and Printers

VBASICA can create high-resolution graphics on the color screen. The
standard monochrome screen supports text but it does not support
graphics; color will support graphics, text, and color. If your computer
has a color board. you can put color and black and white images on an
attached color screen. VBASICA can work on either a monochrome or
color screen. If you have both monochrome and color, use the DOS
MODE command to select either monochrome or color before you
start VBASICA.

After you are in VBASICA, you can use the SCREEN statement to
change the resolution mode. Three modes exist:

> Mode 0: A text-only video display mode.

P Mode 1: A medium-resolution mode for graphics and text.

> Mode 2: A high-resolution mode for graphics and text.

1-12 VBASICA

You can produce a printout (or hard copy) of a screen display in
VBASICA. If you are in Graphics mode (mode [or 2),
GRAPHICS.COM is required; you must load it before entering
VBASICA. If you are in Text mode, GRAPHICS.COM is not
required. GRAPHICS.COM works only with Epson MX and FX
series-compatible printers. To produce a hardcopy of your screen
display, press the Shift and PrtSc (Print Screen) keys simultaneously.

The VBASICA statements that draw and manipulate images are the
following:

PSET CIRCLE PAINT
PRESET GET DRAW
LINE PUT

You can also use the POINT function in graphics. For more informa-
tion on each of these commands, see Chapter 3. The SCREEN state-
ment describes how to choose a mode, and the COLOR statement
discusses the use of colors.

1.7.1 The Color Attributes

You can specify a color attribute with the graphics statements: PSET,
PRESET, LINE, CIRCLE, PAINT, and DRAW. The range is 0 to 3.
These color attribute numbers are distinct from the numbers referring
to actual colors; the latter are only used as parameters in the COLOR
statement.

On screen 1, 0 selects black: 1, 2, and 3 select varying densities of
white.

In Mode 1 on the color screen (screen 1), 0 selects the background
color; 1, 2, and 3 select foreground colors.

In Mode 2 (screen 2), 0 or 2 selects black; | or 3 selects white.

NOTE: The COLOR statement does not affect any graphics screen
except screen i.

Getting Started 1-13

1.7.2 Coordinates

The drawing statements PSET, PRESET, LINE, CIRCLE, GET, PUT,
and PAINT require screen locations as pairs of (x,y) coordinates. The
format is (<x>,<y>) where <x> and <y> are numeric
expressions. The screen coordinates are shown in Table 1-1.

Table 1-1: Coordinates for Color Screen

X ¥y
MODE (HORIZONTAL) (VERTICAL)

1 0-319 0-199

2 0-639 0-199

Point (0,0) is the upper left corner.

You can specify any integer coordinate value (from — 32768 to
32767) for <x> and <y>. VBASICA 2.0 and later releases clip
out-of-range coordinates.

You can specify relative coordinates with the statements PSET,
PRESET, LINE, and CIRCLE. In the following example you can write
< x offset > and <y offset > as numeric expressions:

PSET STEP (1,1)
VBASICA adds their values to the current graphics cursor to

determine the coordinate. The graphics cursor is the point on the
screen where the last graphics point was referenced.

1-14 VBASICA

All the graphics statements (excluding the POINT function) update the
most recent point used. If VBASICA uses the relative form on the
second coordinate, it is relative to the first coordinate. In this case you
can use the following:

STEP (<x offset>,<y offset>)

When you clear the screen with either the SCREEN or CLS statement,
the graphics cursor is set to the middle of the screen. Table 1-2 defines
the midscreen coordinates.

Table 1-2: Midscreen Coordinates for Color Screen

SCREEN COORDINATES

Mode | (160,100)
Mode 2 (320,100)

1.8 Event Trapping

A program can transfer control to a specific program line when a
certain event occurs with event trapping. Control is transferred as if a
GOSUB statement was executed to the trap routine starting at the
specified line number.

The trap routine executes a RETURN statement after completing the

event. The program then resumes execution where it was before the
event trap.

Getting Started 1-15

1.8.1 Event Specifiers

The following are event specifiers:

COM (n) n is the number of the communications channel, 1 or 2.
Typically, the COM trap routine reads an entire message
from the COM port before returning. NOTE: At high
baud rates, the interrupt buffer for COM can overflow.
Use the COM routine for single-character messages with
discretion,

KEY (n) n is a function key number, 1-4. | through 10 are the
soft keys 1 through 10. 11 through 14 are the cursor
direction keys, as follows: 11-Up, 12-Left, 13-Right,
14-Down. A KEY (0) ON, OFF, or STOP enables,
disables, or stops all 14 key events.

Note that KEY (n) ON is not the same statement as KEY ON. KEY
ON displays the values of all the function keys on the twenty-fifth line
of the screen.

When VBASICA traps a key, that occurrence of the key is destroyed.
Therefore, you cannot use the INPUT or INKEY$ statements to find
out which key caused the trap. If you want to assign different functions
to particular keys, you must set up a different subroutine for each key.
You cannot assign the various functions with a single subroutine.

1-16 VBASICA

1.8.2 Controlling Event Trapping
VBASICA controls event trapping with the following statements:

< event specifier> ON
< event specifier > OFF
< event specifier> STOP

When an event is ON and you specify a nonzero number for the trap,
VBASICA checks if the specified event occurred before it starts each
new statement. For example, it checks if a function key was struck or a
COM character came in. If the event occurred, VBASICA performs a
GOSUB to the line you specify in the ON statement.

When an event is OFF, no trapping occurs and VBASICA does not
remember the event even if it occurs.

When vou specify STOP, no trapping can occur. But if the event
happens, VBASICA remembers it and an immediate trap occurs when
VBASICA executes an <event> ON.

When you make a trap for a particular event, the trap automatically
causes a stop on that event so recursive traps can never take place. The
return from the trap routine automatically turns that event trap back
on unless VBASICA performs an explicit OFF inside the trap routine.
When an error trap occurs, it automatically disables all trapping.
Trapping never takes place when VBASICA is not executing a
program.

Getting Started 1-17

1.8.3 Additional Controls

Event trapping includes the following statements:
ON < event specifier > GOSUB < line number >

This statement sets up an event trap line number for the specified
event. A < line number > of 0 disables trapping for this event.

RETURN < line number >

This optional form of RETURN is primarily intended for use with
event trapping. The event trap routine might want to go back into the
VBASICA program at a fixed line number while still eliminating the
GOSUB entry that the trap created.

Use this nonlocal RETURN with care. Any other GOSUB, WHILE,
or FOR active at the time of the trap remains active. If the trap returns
from a subroutine, any attempt to continue loops outside the
subroutine results in the “NEXT without FOR™ error.

1-18 VBASICA

2

Data Entry and Editing in VBASICA

This chapter introduces the VBASICA character set and explains how
to edit your programs with the Full Screen Editor. A description of
how VBASICA handles different data types follows.

2.1 Character Set

The VBASICA character set consists of alphabetic, numeric, and spe-
cial characters. The alphabetic characters in VBASICA are the upper-
and lowercase letters of the alphabet. The numeric characters are the
digits 0 through 9.

2.1.1 Special Characters and Keys

Table 2-1 shows the special characters and keys VBASICA uses.

Table 2-1: Special Characters

CHARACTER NAME

Blank

Equal sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiplication symbol
Slash or division symbol
Up-arrow or exponentiation symbol
Left parenthesis

Right parenthesis

Percent

Number sign

s i o
R |+

Data Entry and Editing in VBASICA 2-1

CHARACTER NAME

$ Dollar sign

! Exclamation point

[Left bracket

] Right bracket

i Comma

Period or decimal point

Quotation mark

Single quotation mark (apostrophe)
Semicolon

Colon

& Ampersand

? Question mark
< Less than
o
\

"

’

Greater than
Backslash or integer division symbol

(@ At-sign

=y Underscore

Backspace Deletes last character typed

Escape Escapes edit mode subcommands

Tab Moves print position to next tab stop (tab
stops are every eight columns)

Return Terminates a line

2.1.2 Control Characters

VBASICA uses these control characters:
» CTRL-A enters edit mode on the line being typed.

» CTRL-C interrupts program execution and returns to VBASICA
command level.

» CTRL-G sounds a tone on your computer.

» CTRL-H is a backspace. It deletes the last character typed.

» CTRL-I is a tab. Tab stops are every eight columns.

» CTRL-J extends the current program line to the next physical line.
» CTRL-R retypes the current line.

» CTRL-S suspends program execution.

2-2 VBASICA

» CTRL-Q resumes program execution after a CTRL-S.
» CTRL-U deletes the current line.

2.2 The Full Screen Editor

Using the Full Screen Editor during program development saves you
considerable time. You can learn to use the Editor by entering a
sample program and practicing the edit commands described in this
manual.

2.2.1 Writing Programs

The Full Screen Editor processes any line of text you type while
VBASICA is in Direct mode. VBASICA is always in Direct mode after
the prompt “Ok’ and until you give a RUN command.

Lines of text beginning with a numeric character (digit) are considered
program statements. You can extend a logical line over more than one
physical line by using the linefeed key ("J). This key opens a blank line
on the screen and moves any text after it down one line. A carriage
return signals the end of the logical line. When you enter a carriage
return the entire logical line is passed to VBASICA.

VBASICA processes program statements in one of four ways:

1. Adds a new line to the program—occurs if the line number is legal
(range is O through 65529) and at least one nonblank character
follows the line number in the line.

2. Modifies an existing line—occurs if the line number matches the
line number of an existing line in the program. The text of the
newly entered line replaces the existing line.

3. Deletes an existing line—occurs if the line number matches the line
number of an existing line and the entered line contains ONLY a
line number.

Data Entry and Editing in VBASICA 2-3

4. Produces an error.

a. If you attempt to delete a nonexistent line, VBASICA displays
the “Undefined line number” error message.

b. If program memory is exhausted, and you add a line to the
program, VBASICA displays the “Out of memory” error message
and does not add the line.

You can place more than one VBASICA statement on a line, but each
statement on a line must be separated from the last by a colon (;).

A VBASICA program line always begins with a line number, ends with
a carriage return, and can contain a maximum of 250 characters.

2.2.2 Editing Programs

Use the LIST command to display an entire program or range of lines
on the screen to edit them with the Full Screen Editor. Modify text by
moving the cursor with the arrow keys and CTRL-B, CTRL-F, and
CTRL-N to the place requiring change. Then perform one of the
following functions:

1. Overtype characters.

2. Delete characters to the left of the cursor.

3. Delete words or characters to the right of the cursor.

4. Insert characters at the cursor.

5. Add, or append, characters to the end of the current logical line.

Special keys assigned to the various Full Screen Editor functions
perform these actions as described in Chapter 2.2.

A program line is not actually modified within the VBASICA program
until you enter a Return. It is sometimes easier to move around the
screen and make corrections to several lines. Return to the beginning
of each line you changed and press Return. The Return stores the
modified lines in the program. As you make changes, the cursor might

2.4 VBASICA

be positioned on a line containing a VBASICA message. such as “Ok™.
When this happens, VBASICA automatically erases the line. The
program recognizes its own messages, which are terminated by FF
Hex:

It is not necessary to move the cursor to the end of the logical line
before pressing Return. The Screen Line Editor remembers where each
logical line ends and transfers the whole line, regardless of the cursor
position.

2.2.3 Function Keys

The Full Screen Editor recognizes ten special function keys, the arrow
keys, the Backspace, the Tab, and the Return. Fourteen control keys
exist for moving the cursor on the screen, inserting characters, or
deleting words or characters. Table 2-2 lists the keys, their
corresponding hexadecimal and decimal codes, and their functions.
Table 2-3 describes the functions in detail.

Data Entry and Editing in VBASICA 2-5

!

Table 2-2: VBASICA Function Keys

KEY FUNCTION
01 01 CTRL-A Edit line buffer
02 02 CTRL-B Previous word
03 03 CTRL-C Break (stop program)
05 05 CTRL-E Erase to end of line
06 06 CTRL-F Next word
08 08 CTRL-H Destructive backspace
09 09 CTRL-I Tab (modulo 8)
0A 10 CTRL-J Linefeed
0B 11 CTRL-K Home
0c 12 CTRL-L Clear screen

0D 13 CTRL-M Carriage return (enter logical line)
OE 14 CTRL-N Append to end of line

12 18 CTRL-R Toggle insert/overtype mode

14 20 CTRL-T Display next set of function keys; toggles display on/off
15 w2l CTRL-U Clear logical line

17 23 CTRL-W Delete word

1A 26 CTRL-Z Clear to end of window

1C 28 s Cursor right

1D 29 = Cursor left

1E 30) Cursor up

IF 31 | Cursor down

7F 128 DEL Delete character

2-6 VBASICA

Table 2-3: Function Explanations

KEY

DESCRIPTION

CTRL-K HOME
CTRL-L CLEAR

CTRL-F

CTRL-B
CTRL-N

CTRL-T

CTRL-E

CTRL-R

Moves the cursor to the upper left corner of the screen.

Clears the screen and positions the cursor in the upper left
corner of the screen.

Moves the cursor up one line.

Moves the cursor down one line.

Moves the cursor one column left. When the cursor is advanced
beyond the left edge of the screen, it moves to the right side of
the screen on the preceding line until it reaches the Home
position.

Moves the cursor one position right. When the cursor is
advanced beyond the right edge of the screen, it moves to the left
side of the screen on the next line down until it reaches the end
of the screen.

Moves the cursor to the beginning of the next word. A word is
defined as the characters A-Z, a—z, or 0-9, and is delineated by

_ spacercharaeters. The next word is defined as the next character

171 1d the right of thelchisbr in the set TA.Z) b 0C9F S

Moves the cursor to the beginning of the previous word.

Moves the cursor to the end of the logical line. VBASICA
appends characters typed from this position to the line.

Advances function key display on the 25th line to the next sct of
function keys, and toggles the display on/off.

Erases to the end of the logical line from the current cursor
position. VBASICA erases all physical lines until it finds the
terminating carriage return.

Toggles Insert/Overtype mode. Pressing this key changes the
mode to the other mode. VBASICA automatically toggles Insert
mode to Overtype mode when you press any cursor movement
keys or Return.

In Insert mode, VBASICA inserts typed characters at the cursor
position and moves all characters on the physical line to the
right. Wrap-around is in effect: characters advanced off the right
edge of the screen appear from the left edge of the screen on the
following line.

When out of Insert mode, characters typed replace existing
characters on the line.

Data Entry and Editing in VBASICA 2-7

!

KEY DESCRIPTION

TAB In Insert mode, inserts blanks from the current cursor position to
the next tab stop.

When out of Insert mode, moves the cursor right 8 spaces at a
time until it reaches the end of the screen.

DEL Deletes one character under the cursor for each depression. Then
all characters to the right move one position left to fill in the
space. If a logical line extends beyond one physical line,
characters on subsequent lines are moved left one position to fill
in the previous space, and move the character in the first column
of each subsequent line up to the end of the preceding line.

BS Backspace. Deletes the last character typed or the character to
the left of the cursor. Moves all characters to the right of the
cursor left one position. Moves subsequent characters and lines
within the current logical line up, as with the DEL key.

CTRL-U Erases the entire logical line.

CTRL-C Returns to Direct mode, without saving any changes made to the
line currently being edited.

CTRL-A Enters the line buffer at the current cursor position for editing,

CTRL-J Moves to the next physical line; causes scroll, if necessary.

CTRL-W Deletes characters up to the next word.

CTRL-Z Clears the screen to spaces from the cursor position to the end of
the screen.

You can extend a logical line over more than one physical line by
using the linefeed key sequence (CTRL-J). Typing a linefeed causes
subsequent text to start on the next line without entering a carriage
return. When a carriage return is finally entered, the entire logical line
is passed to VBASICA for storage.

Occasionally, VBASICA can return to Direct mode with the cursor
positioned on a line containing a message VBASICA issues, such as

“Ok”. When this happens the line is automatically erased.

NOTE: If you hit a carriage return at a VBASICA message, the
message is sent for processing, and a syntax error results.

2-8 VBASICA

2.2.4 Syntax Errors

When VBASICA encounters a syntax error during program execution,
VBASICA automatically enters EDIT at the line containing the error.
For example,

10 A = 2$5 (you meant 10 A = 275)
RUN

Syntax Error in 10

0K

10 A = 2385

The Screen Line Editor displays the line in error and puts the cursor
under the digit 1. You move the cursor right to the dollar sign ($) and
change it to an up-arrow (7). Then press Return. VBASICA then stores
the corrected line in the program.

Variables are destroved whenever you change a program line. If you
want to examine the contents of some variable before making the
change, press CTRL-C instead of moving the cursor. This action
returns you to Direct mode, and preserves the variables.

2.3 Constants

Constants are the actual values VBASICA uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters
enclosed in double quotation marks. The following are examples of
string constants:

"HELLO"

"$25,000.00"
"Number of Employees"

Data Entry and Editing in VBASICA 2-9

Numeric constants are positive or negative numbers. Numeric
constants in VBASICA cannot contain commas. There are five types
of numeric constants:

P Integer constants: Whole numbers between — 32768 and 32767.
Integer constants do not have decimal points.

» Fixed-point constants: Positive or negative real numbers; that is.
numbers that contain decimal points,

» Floating-point constants: Positive or negative numbers represented
in exponential form (similar to scientific notation). A floating-point
constant consists of an optionally signed integer or fixed-point
number (the mantissa) followed by the letter E and an optionally
signed integer (the exponent). The allowable range for floating-point
constants is 10 < — 38 > to 10 <38 >,

Here are some examples of floating-point constants:

235.9881lE-7 = .00002359881
2359E6 = 2359000000

(Double-precision floating-point constants use the letter D instead of
E. See.Chapter 2.3.1.)

» Hex constants: Hexadecimal numbers with the prefix &H. Some
examples are;

&HT76
&H32F

» Octal constants: Octal numbers with the prefix &0 or &. Examples
of octal constants are:

&0347
&1234

210 VBASICA

2.3.1 Single- and Double-Precision Numeric Constants

Numeric constants can be single-precision or double-precision
numbers. Single-precision numeric constants are stored with up to
seven digits. Double-precision numbers are stored with 16 digits of
precision, and printed with up to 16 digits.

A single-precision constant is any numeric constant that has seven or
fewer digits, an exponential form using E, or a trailing exclamation
point (!). These are examples of single-precision constants:

46.8
-1.09E-06
3489.0
2281

A double-precision constant is any numeric constant that has eight or
more digits, an exponential form using D, or a trailing number sign
(#). These are double-precision constants:

345692811
-1.09432D-06
3489 .0#
7654321.1234

2.4 Variables

Variables are names that represent values in a VBASICA program. The
value of a variable is assigned by the programmer, or as the result of
calculations done by a program. Before a variable is assigned a value, it
is assumed to have a value of zero.

Data Entry and Editing in VBASICA 2-11

!

2.4.1 Variable Names and Declaration Characters

VBASICA variable names can be up to 40 characters long. A variable
name can contain letters, numbers, and the decimal point. The first
character must be a letter. Special type declaration characters are also
allowed. '

A variable name cannot be a reserved word, but variable names can
contain reserved words. Reserved words include all VBASICA
commands, statements, function names, and operator names. If a
variable begins with FN, it is assumed to be a call to a user-defined
function.

Variables represent either a numeric value or a string. String variable
names have a dollar sign ($) as the last character. (For example: A$ =
"SALES REPORT".) The dollar sign is a variable type declaration
character; it “declares” that the variable represents a string.

Numeric variable names declare integer, single-, or double-precision
values. The type declaration characters for these variable names are:

% Integer variable

! Single-precision variable

Double-precision variable
The default type for a numeric variable name is single-precision.

Here are examples of VBASICA variable names:
Pl# declares a double-precision value

MINIMUM! declares a single-precision value

LIMIT% declares an integer value
N$ declares a string value
ABC represents a single-precision value (the default type)

Variable types can also be declared by including the VBASICA
statements DEFINT, DEFSTR, DEFSNG. and DEFDBL in the
program. These statements are described in Chapter 3.

2-12 VBASICA

2.4.2 Array Variables

An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable that
is subscripted with an integer or an integer expression. An array
variable name has as many subscripts as there are dimensions in the
array. For example, V(10) references a value in a one-dimension array;
T(1,4) references a value in a two-dimension array. The maximum
number of dimensions for an array is 285. The maximum number of
elements per dimension is 32767.

2.4.3 Space Requirements

Table 2-4 shows the space requirements for variables and arrays.

Table 2-4: Space Requirements (in Bytes)

SINGLE- DOUBLE-
INTEGER PRECISION PRECISION
Variable 2 4 8
Array (per element) 2 4 8

Strings need three bytes overhead, plus the present contents of the
string.

Data Entry and Editing in VBASICA 2-13

2.5 Type Conversion

When necessary, VBASICA converts a numeric constant from one
type to another. You should note the following rules and examples.

If a numeric constant of one type is set equal to a numeric variable of
a different type, the number is stored as the type declared in the
variable name. For example,

10 A% = 23.42
20 PRINT A%
RUN

23

If a string variable is set equal to a numeric value (or vice versa), a
“Type mismatch” error occurs.

During expression evaluation, all operands in an arithmetic or
relational operation are converted to the same degree of precision (that
is, the degree of the most precise operand). The result of an arithmetic
operation is returned to this degree of precision.

In this example, the arithmetic is done in double-precision, and the
result is returned in D# as a double-precision value:

10 D# = 6#/7

20 PRINT D#

RUN
.857142857142857 1

In this example, the arithmetic is done in double-precision, and the
result is returned in D (a single-precision variable), rounded, and
printed as a single-precision value:

10 D = 6#/7

20 PRINT D

RUN
.8571429

2-14 VBASICA

Logical operators (see Chapter 2.6.3) convert their operands to integers
and return an integer result. Operands must be in the range — 32768
to 32767; otherwise, an overflow error occurs.

When a floating-point value is converted to an integer, the fractional
portion is rounded. For example:

10 LET C% = 55.88
20 PRINT C%
RUN

56

If a double-precision variable is given a single-precision value, only the
first seven digits (rounded) of the converted number are valid.
Consequently, a single-precision value has only seven digits of
accuracy. The absolute value of the difference between the printed
double-precision number and the original single-precision value is less
than 6.3E — 8 times the original single-precision value. For example:

10 LET A = 2.04

20 LET B# = A

30 PRINT A; B#

RUN

2.04 2.039999961853027

Data Entry and Editing in VBASICA 2-15

2.6 Expressions and Operators

An expression can be a string or numeric constant, or a variable; or it
can combine constants and variables with operators to produce a single
value,

Operators perform mathematical or logical operations on values.
VBASICA operators are divided into these categories:

» Arithmetic

» Relational

> Logical

» Functional

2.6.1 Arithmetic Operators

The order of precedence of arithmetic operators is shown in Table 2-5.

Table 2-5: Arithmetic Operators

SAMPLE
OPERATOR OPERATION EXPRESSION
- Exponentiation XY
== Negation —X
il Multiplication, floating-point XY, XY
division
A = Addition, subtraction Xy

2-16 VBASICA

—

Use parentheses to change the order in which the operations are done.
Operations within parentheses are done first. Inside parentheses, the
usual order of operations is maintained. Table 2-6 shows some sample
algebraic expressions and their VBASICA equivalents.

Table 2-6: Algebraic Expressions

ALGEBRAIC VBASICA
EXPRESSION EXPRESSION
X +2Y X +Y*2
Bl X =N

Z
X (Y/Z) X*Y/Z
X+Y (X+Y)Z
z
(XYY (X2YY
X(—Y) X*(—Y)

NOTE: Two consecutive operators must be separated by parentheses.

Integer Division and Modulus Arithmetic

Two additional operators available in VBASICA are integer division
and modulus arithmetic.

Integer division is indicated by the backslash (\). (On most keyboards,
you type a backslash by pressing the + key and the CTRL key
simultaneously.)

The operands are rounded to integers (in the range — 32768 to 32767)

before the division is done. The quotient is truncated to an integer;
that is, all decimal places are dropped.

Data Entry and Editing in VBASICA 2-17

Here are two examples of integer division:

10\g = 2
25.68\6.99 = 3

In an expression, integer division is performed after all multiplication
and floating-point division is finished.

Modulus arithmetic is indicated by the operator MOD. Modulus
arithmetic gives an integer result equal to the remainder of an integer
division.

This example:

10.4 MOD 4 = 2

is equivalent to 10/4 2 with a remainder of 2. but this example:

25.68 MOD 6.99 5

is equivalent to 26/7 = 3 with a remainder 5.

The precedence of modulus arithmetic is just after integer division.

Overflow and Division by Zero

If VBASICA encounters a division by zero while evaluating an
expression, the “Division by zero™ error message is displayed. Machine
infinity with the sign of the numerator is supplied as the result of the
division, and execution continues. If the evaluation of an exponen-
tiation results in zero being raised to a negative power, the “Division
by zero” error message is displayed. Positive machine infinity is
supplied as the result of the exponentiation, and execution continues.

2-18 VBASICA

2.6.2 Relational Operators

Relational operators compare two values. The result of the comparison
is either true (— 1) or false (0). This result can be used to make a
decision regarding program flow. Table 2-7 shows the VBASICA
relational operators.

Table 2-7: VBASICA Relational Operators

OPERATOR RELATION TESTED EXPRESSION
= Equality X=Y
e Inequality X< >Y
< Less than XY
> Greater than XY
< = Less than or equal to X< =Y
> = Greater than or equal to X>=Y

The equal sign is also used to assign a value to a variable.

When arithmetic and relational operators are combined in one
expression, the arithmetic is always done first. For example, this
expression is true if the value of X plus Y is less than the value of
T — 1 divided by Z:

% % ¥ e T - L

Data Entry and Editing in VBASICA : 2-19

2.6.3 Logical Operators

Logical operators test multiple relations, bit manipulation, or Boolean
operations. The logical operator returns a single-bit result which is
either zero (false) or nonzero (true). In an expression, logical
operations are performed after arithmetic and relational operations.
The outcome of a logical operation is determined as shown in Table
2-8. The operators are listed in order of precedence.

Table 2-8: Logical Operations

VALUES

OF X NOT NOT X X X XOR X X IMP
AND Y X Y ANDY ORY L% EQVY ¥
X=0 =il

X=1 0

Y=0 —1

Y=I 0

X=1 —2 -2 —1 1 0 = =
Y=1

X=1 =2 =4 0 =1 z=l | 0 0
Y =0

X=0 ==l —2 0 =] = | 0 =
Y=1

X=0 =] == 0 0 0 =1 =1
Y=0

2-20 VBASICA

Just as relational operators are used to make decisions about program
flow, logical operators can connect two or more relations and return a
true or false value to be used in a decision. For example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators convert their operands to 16-bit, signed, two’s
complement integers in the range — 32768 to +32767. (If the
operands are not in this range, an error results.) If both operands are 0
or — I, logical operators return 0 or — 1. The given operation is
performed on these integers in bitwise fashion (that is, each bit of the
result is determined by the corresponding bits in the two operands).

You can use logical operators to test bytes for a particular bit pattern.
For instance, the AND operator can “mask” all but one of the bits of a
status byte at a machine I/O port. The OR operator can “merge” two
bytes and create a particular binary value. (The two’s complement of
any integer is the bit complement plus one; that is, NOT
X = —(FX = 1).) For example:

63 AND 16=16

63 can be expressed as binary 111111, and 16 is binary 10000, so 63
AND 16 equals 16.

Data Entry and Editing in VBASICA 2-21

In this example:
15 AND 14=14
the answer is computed like this:

Decimal 15 = Binary 1111
Decimal 14 = Binary 1110

Binary 1110 = Decimal 14

1 AND 0O
1 AND 1
1 AND |
1 AND 1

=

The answer to this expression:
4 OR 2=6
is computed in this way:

Decimal 4 = Binary 100
Decimal 2 = Binary 010

Binary 110 = Decimal 6

l—OORO=0
0OOR 1

10RO

I

2-22

) e R

VBASICA

This expression:
10 OR 10=10
is computed:

Decimal 10
Decimal 10

Binary 1010
Binary 1010

Binary 1010 = Decimal 10

i}:::O()R()
10R I

00RO
1OR 1 =

I

II

Il

0
1
0
1

Computing logical operations with negative numbers is a little
different. Each negative integer must first be converted into its bit
complement, and then into its two’s complement. Because each word
has 16 bits, both of these complements have 16 digit places.

For example, to compute:

-1 AND 8=8
first convert — 1 to its bit complement, binary [111111111111110.
Then add 1 to the bit complement to get the two’s complement,

Lrrrrriteittittl. Then:

Binary 1111111111111111
Decimal 8 =. Binary 1000

Binary 1000 = Decimal 8

I ANDO =0
1ANDO =0
1ANDO =0
Il AND 1 =1

Data Entry and Editing in VBASICA 2-23

!

In this example:
=1 OR -2=-1

the bit complement of — 1 is 1111111111111110. Add 1 to get the
two’s complement, 11111111111111111.

The bit complement of —2 is 1111111111111101, and the two’s
complementis [111111111111110. Then:

Binary 1111111111111111
Binary 1111111111111110
1111111111111111 = Decimal — 1

2.6.4 Functional Operators

In an expression, a function calls a predetermined operation to be
done on an operand. VBASICA has functions that reside in the
system, 7such as SQR (square’ root). or SIN (sine). These. ‘‘intrinsic”
functions-dre deseribed" in “Chapter 3. VBASICA-also allows “user-
defined” functions.

2.6.5 String Operations
Strings are concatenated using the plus sign (+). For example:

10 A$="FILE" : B$="NAME"
20 PRINT A$ + B$

30 PRINT "NEW" + A% + B$%
RUN

FILENAME

NEW FILENAME

2-24 VBASICA

Strings are compared by using the same relational operators that are
used with numbers:

= < = < = < = > =

String comparisons are made by taking one character at a time from
each string and comparing their ASCII codes. If all the ASCII codes
are identical, the strings are equal. If the ASCII codes differ, the lower
code number precedes the higher. If the end of one string is reached,
the shorter string is said to be smaller. Leading and trailing blanks are
significant. Here are some examples of string comparisons:

WAAM < MAB"
"FILENAME" = "FILENAME"
n X& " > n X# "
"gL" > "CL"
n k g n > n KG n

"SMYTH" < "SMYTHE"
B$ < "9/12/85" where B$ = "8/12/85"

String comparisons can test string values or alphabetize strings. All
string constants used in comparison expressions must be enclosed in
quotation marks.

2.7 Input Editing

VBASICA lets you edit your input. Use the EDIT command to change
portions of a line without retyping the entire line. EDIT has this
format:

EDIT <line >
where < line > is the number of the line where editing is to begin.
After you type the EDIT command, VBASICA enters edit mode at the
specified line, displays the line number of the line to be edited

(followed by a space), and then waits for you to enter an edit mode
subcommand.

Data Entry and Editing in VBASICA 2-25

To delete the entire program in memory, use the NEW command
described in Chapter 3. NEW is usually used to clear memory before
entering a new program.

2.7.1 Syntax Errors

When VBASICA encounters a syntax error during execution of a
program, it automatically enters edit mode at the line that contains the
error. For example:

10 K = 2(4)

RUN

Syntax error in 10
10

When you finish editing the line and press Return (or use the E
subcommand), VBASICA reinserts the line. All variable values are
lost. To preserve the variable values for examination, exit edit mode
with the Q subcommand. VBASICA returns to command level, and all
variable values are saved.

2.7.2 CTRL-A

Type a CTRL-A to enter edit mode on the line vou are currently
typing. VBASICA responds with a carriage return, and the cursor
moves to the first character in the line.

If you have just entered a line and want to edit it, the command:

EDIT.

enters edit mode at the current line. (The period refers to the current
line.)

2-26 VBASICA

2.8 Error Messages

An error message is displayed if VBASICA detects an error that causes
program execution to halt.

See Appendix A for a complete list of VBASICA error codes and
messages.

Data Entry and Editing in VBASICA 2-27

3

VBASICA Statements, Commands,
and Functions

This chapter describes the VBASICA statements, commands, and
functions. It is organized as follows:

FORMAT:

Shows the correct format for the instruction.
PURPOSE:

Tells what the instruction does.

REMARKS:

Describes in detail how to use the instruction.
EXAMPLE:

Shows sample programs or program segments that demonstrate the use
of the instruction.

Wherever the format for a statement or command is given, the follow-
ing rules apply:
1. Items in uppercase letters must be input as shown.

2. Items in lowercase letters enclosed in angle brackets (< >) are to
be supplied by the user.

3. Items in square brackets ([]) are optional.

VBASICA Statements, Commands, and Functions 3-1

4. All punctuation except angle brackets and square brackets (that is,
commas, parentheses, semicolons, hyphens. equal signs) must be
included where shown.

5. Items followed by an ellipsis (...) can be repeated any number of
times (up to the length of the line).

ABS Function

FORMAT:
ABS(X)
PURPOSE:
Returns the absolute value of the expression X.
EXAMPLE:

PRINT ABS (7*(-5))
35
0k

3-2 VBASICA

ASC Function

FORMAT:
ASC(X$)
PURPOSE:

Returns a numeric value that is the ASCII code of the first character of
string X$. If X$ is null, VBASICA returns an “illegal function call”
error. (See Appendix C for ASCII codes.)

See the CHR$ function for ASCII-to-string conversion.
EXAMPLE:

10 X$ = "TEST"
20 PRINT ASC(X$)
RUN

84

Ok

ATN Function

FORMAT:
ATN(X)
PURPOSE:
Returns the arctangent of X in radians. The result is from — pi/2 to

pi/2. X can be any numeric type, but ATN is always evaluated in
single-precision.

VBASICA Statements, Commands, and Functions 3-3

EXAMPLE:

10 INPUT X
20 PRINT ATN(X)
RUN
23
1.249046
Ok

AUTO Command

FORMAT:
AUTO [<line > [, <increment >]]
PURPOSE:
Generates a line number automatically after each carriage return.
REMARKS:
< line > is the line number of the first program line.

<increment > is the number by which AUTO increments each sub-
sequent line number.

AUTO starts numbering at the specified line number and increments
each subsequent line number by the specified increment. The default
for both parameters is 10. If a comma follows <line > and < incre-
ment > is not specified, VBASICA uses the increment specified in the
most recent AUTO command.

If AUTO generates a line number already in use, an asterisk appears
after the number to warn you that any input replaces the existing line.
Press Return immediately after the asterisk to save the line and gen-
erate the next line number.

3-4 VBASICA

Type a CTRL-C to terminate AUTO and return to the VBASICA
command level. VBASICA does not save the line in which the CTRL-
C occurs.

EXAMPLE:
AUTO 100, 50

generates line numbers 100, 150, 200, and so on. in increments of 50.

AUTO

generates line numbers 10, 20, 30, 40, and so on, in increments of 10,
the default increment.

BEEP Statement

FORMAT:

BEEP
PURPOSE:
The BEEP statement sounds the speaker at 800 Hz for Y4 second.
REMARKS:
Both BEEP and PRINT CHR$(7); have the same effect.
EXAMPLE:

2430 IF X < 20 THEN BEEP 'if X is out of range,
'complain.

VBASICA Statements, Commands, and Functions 3-5

BLOAD Command

FORMAT:

BLOAD < filespec > [, <offset>]

PURPOSE:

Loads a memory image into memory.

REMARKS:

< filespec > is a string expression representing the file specification. In
VBASICA 2.0 and later, it can contain a path as described in Chapter
1.5, except for the extension. If you omit the device name, VBASICA
assumes the current drive. The only valid extensions are the following:

(none)

B

.D

(no extension)

for VBASICA programs in the internal format (created
with the SAVE command)

for protected VBASICA programs in the internal format
(created with the SAVE P command)

for VBASICA programs in ASCII format (created with
the SAVE A command)

for memory image files (created with the BSAVE com-
mand)

for data files (created by OPEN followed by output state-
ments)

If no period appears in the filename and if the filename has less than
nine characters, VBASICA assigns the default extension .BAS.

VBASICA

< offset > is a numeric expression from 0 to 65535. The expression is
the address at which the loading starts, specified as an offset into the
segment declared by the last DEF SEG statement. If you omit the
< offset >, VBASICA assumes the < offset> specified in the last
BSAVE.

WARNING: BLOAD does not perform address range checking.
Therefore, it is possible to BLOAD anywhere in memory. Ensure that
you are not overwriting the operating system, VBASICA, or your own
program.

EXAMPLE:

10 'Load an assembly program into VBASICA DS
20 'assuming no program has been loaded.

30 DEF SEG 'set the data segment to VBASICA's
40 BLOAD "MOVE".,0 'load the CALLable program

BSAVE Command

FORMAT:
BSAVE < filespec >, < offset >, <length >
PURPOSE:
Saves portions of the computer’s memory on the specified device.
REMARKS:
< filespec > is a string expression representing the file specification. In

VBASICA 2.0 and later, it can contain a path. Refer to Chapter 1.5 for
more information on file specifications.

VBASICA Statements, Commands, and Functions 37

< offset > is a numeric expression from 0 to 65535. This expression is
the address at which the saving starts, specified as an offset into the seg-
ment the last DEF SEG declared.

<length> is a valid numeric expression returning an unsigned
integer from 1 to 65533, which is the length of the memory image to

be saved.
EXAMPLE:
10 'To save a hi-res VICTOR screen image to disk
20 DEF SEG = &HF000 'point to VICTOR screen ram
30 HIGH.BYTE = PEEK (1) AND 7 'get lst byte of
pointer to dot memory and mask off attribute bits
40 LOW.BYTE = PEEK(0) 'get second byte of pointer
50 HIGH.BYTE = HIGH.BYTE * 256 'shift high byte
over four places
60 POINTER = HIGH.BYTE + LOW.BYTE 'and add
together to make pointer
70 POINTER = POINTER * 32 ‘'ort controller shifts
this 5 places to get actual address, so do we
80 DOT.SEG = INT(POINTER/16)-1 'make a segment
value
90 DEF SEG = DOT.SEG ‘'and go there. This is the

memory that holds the screen image.

100 BSAVE "MYSCREEN.M",0,40000! 'screen is 400 x

800 = 320,000 bits or 40K bytes (320,000/8).

VBASICA

CALL Statement

FORMAT:
CALL < variable name > [{ <argument list>)]
PURPOSE:

The CALL statement is the recommended way of interfacing 8086
machine language programs with VBASICA. Do not use the outmoded
user call: x = USR(n).

REMARKS:

< variable name > contains the address of the starting point in
memory of the subroutine being CALLed.

< argument list > contains the variables or constants, separated by
commas, to be passed to the routine.

When vou invoke the CALL statément, the following occurs:

1. For each parameter in the argument list, the 2-byte offset into the
data segment [DS] of the parameter’s location is pushed onto the
stack.

2. The return address code segment [CS] and offset [IP] are pushed
onto the stack.

3. Control is transferred to your routine via the segment address given
in the last DEF SEG statement and offset given in < variable
name > .

Your routine now has control. You can reference parameters by mov-

ing the stack pointer [SP] to the base pointer [BP] and adding a posi-
tive offset to [BP].

VBASICA Statements, Commands, and Functions 3-9

RULES:

The assembly language subroutine must follow these rules to work
correctly:

1
2,

It must be declared FAR.

Segment registers DS and ES must be restored to their entry values
before returning to VBASICA.

. The general purpose registers (AX, BX, CX, DX, SI, DI, and BP)

can have any value when returning to VBASICA.

. The assembly language routine must not change the length of any

VBASICA strings.

. The assembly language routine must perform a RET (n), where n

= 2 times the number of parameters, to restore the stack pointer to
its proper value.

. You can return values to VBASICA by passing a parameter in

which the result will be returned.

VBASICA Data Types

To manipulate data passed to an assembly language subroutine, you
must understand how the various data types are represented in
memory. When a subroutine is called, VBASICA passes the address of
one of the following data representations:

L;
2

Integer: A two-byte, two’s-complement number.

Single precision number: A four-byte, binary, floating-point quan-
tity. The most significant byte contains the value of the exponent
minus 127. The remaining three bytes contain the mantissa. The
most significant byte of the mantissa contains the sign bit, followed
by the seven highest bits of the mantissa. A positive number is
represented with a 0 as the sign bit, and a negative number with a 1
as the sign bit. The decimal point is left of the most significant bit of

3-10 VBASICA

-

the mantissa. A 1 is always assumed to exist immediately to the
right of the mantissa. although it is not represented. Thus the
number is represented as the following:

((sign) 1.(mantissa)*2) (exponent-127)

3. Double precision number: An eight-byte, binary, floating-point
quantity. It is represented exactly as a single precision number,
except that the mantissa consists of 55 bits, that is, 7 bytes less the
sign bit.

4. String: VBASICA passes the offset address of a string descriptor,
which is a three-byte data structure. The first byte of the string
descriptor contains the length of the string. The next two bytes con-
tain the address of the actual ASCII string. The assembly language
subroutine can modify the string, but it must not change the string
descriptor or the string length.

5. Array: Arrays consist of sequential elements of the array type. For
example, an integer array containing twenty elements is represented
as twenty sequential integers in memory.

Passing Parameters

VBASICA passes all subroutine parameters by reference—that is, the
actual location of the parameter is passed, not a copy of its value. In a
CALL statement, the offset of each parameter’s address is pushed onto
the stack in the same order that the parameters are listed in the pro-
cedure call. All parameters to the assembly language subroutine must
be variables. Upon entry to the subroutine, the stack is arranged as
shown in the following diagram. Reference the parameters by using the
BP register to get their address off the stack.

VBASICA Statements, Commands, and Functions 3-11

Low addresses
SP — | Return address
(4 bvtes)

SP + 49 Offset of
last parameter Stack grows
down

SP+ 6 Offset of
previous to
last parameter

SP 8w ete. High addresses

EXAMPLE:

The following example shows how to load an assembly language sub-
routine from a VBASICA program. The assembly language routine
performs modulo arithmetic on two integers, returning the remainder
from dividing the first integer by the second. In this example, the
assembly language module is loaded at address 1664:0 Hex, but this
address is different for different applications. An explanation of the
method to determine this address follows the example.

10 <!

20 ' load the MODULO routine

30

40 DEF SEG = &H1664

50 BLOAD "MODULO",O

60 MODULO = O

b il

80 ' call the MODULO routine with some sample data
90 '

100 A% = 140

130 B% = 1Y

120 REMAINDER% = O

130 CALL MODULO(A%,B%,REMAINDERY)

140 PRINT A%;"modulo";B%;"is"; REMAINDERY
150 END

3-12 VBASICA

Assembly language module for use with CALL statement:

name modulo

code segment public 'code'
assume cs:code,ds:code
modulo proc far

: This module is called from VBASICA with 3
. parameters, using the CALL statement. It
: divides the first parameter by the second
: and returns the remainder in the third.

mov bp. sp ;BP used to get parameters
mov bx, [bp+8] ;BX=pointer to dividend
mov ax, [bx] ;AX=value of dividend

mov bx, [bp+6] ;BX=pointer to divisor

mov ot [bx] ;CX=value of divisor

mov dx, O ;DX: AX=dividend

idiv ox :AX=quotient,DX=remainder
mov bx, [bp+4] ;BX=pointer to result

mov [bXT, dx ;return result to VBASICA
ret 6 ;no. of parameters*2=6

modulo endp
code ends
end

Loading the Assembly Language Module

To call the assembly language module, you must know its location
(address). With the BLOAD statement, you can load the module at
any physical address. To use the BLOAD statement to load a module,
you must first create the disk file containing the module with LINK,
DEBUG, and the BSAVE statement, as follows:

1. After assembling your module to create the object file, use the linker
to create the .EXE file. Use the /HIGH switch when linking so the
module loads in high address memory.

VBASICA Statements, Commands, and Functions 313

2. Use the debugger to load the .EXE file produced in step 1.

3. Display the register values with the R command to determine where
the subroutine was loaded. Write down the values contained in the
CS:IP register pair and the CX register. The CS:IP register pair con-
tains the starting address of the subroutine and the CX register con-
tains its length.

4. Load and execute VBASICA from DEBUG with this sequence of
commands:

NVBASICA.EXE
L
N
G

Your assembly language module is still loaded in high address
memory.

5. Set the segment value in VBASICA with a DEF SEG statement:
DEF SEG = < value in CS register >
These values are hexadecimal and must be preceded with &H.
6. Save the module with a BSAVE statement:
BSAVE < filespec >, <value in IP reg.>, <value in CX reg.>
You can now call the assembly language subroutine from your

VBASICA program. Your VBASICA program requires the following
statements before you can call the subroutine:

DEF SEG = < value in CS register >
BLOAD < filespec >, < value in IP register >
< SUBROUTINE > = < value in IP register >
You can then call the subroutine with statements of the form:

CALL < SUBROUTINE > < PARAMETER1, PARAMETER2 >, ...

NOTE: You may need to use the /M: switch to set the top of
VBASICA’s DS at vour CS-1 to keep from loading your routine on top
of VBASICA.

3-14 VBASICA

CDBL Function

FORMAT:
CDBL(X)
PURPOSE:
Converts X to a double-precision number.

EXAMPLE:

10 A = 454 .67

20 PRINT A;CDBL(A)

RUN

454 .67 454 .6699829101563
Ok

CHAIN Statement

FORMAT:

CHAIN [MERGE] < filespec > [,[< line number expr >]J[,ALL]
[,DELETE < range >]]

PURPOSE:

Calls a program and passes variables to it from the current program.
REMARKS:

< filespec > is a string expression representing the file specification. In

VBASICA 2.0 and later, it can contain a path. Refer to Chapter 1.5 for
more information on file specifications.

VBASICA Statements, Commands, and Functions 3-15

< line number expr > is a line number or an expression that evaluates
to a line number in the called program. It is the starting point for exe-
cution of the called program. If you omit < line number expr >, exe-
cution starts at the first line.

< line number expr > is not affected by a RENUM command. With
the ALL option, VBASICA passes every variable in the current pro-
gram to the called program. If you omit the ALL option, the current
program must contain a COMMON statement to list the passed vari-
ables.

If you use the ALL option, and not < line number expr >, a comma
must hold the place of <line number expr > .

EXAMPLE:

CHAIN"PROG1", 1000, ALL
If you include the MERGE option, VBASICA brings a subroutine into
the program as an overlay. That is, a MERGE operation occurs with
the current program and the called program. The called program must
be an ASCII file if it is to be MERGEd. For example,

CHAIN MERGE"OVRLAY", 1000

Delete an existing overlay each time a new overlay is brought in with
the DELETE options. For example,

CHAIN MERGE"OVRLAY2", 100, DELETE 1000-5000
The RENUM command affects the line numbers in < range > .
If you omit the MERGE option, CHAIN does not preserve variable
types or user-defined functions for use by the chained program. You
may restate any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFEN

statements containing shared variables in the chained program.

The CHAIN statement with the MERGE option leaves the files open
and preserves the current OPTION BASE setting.

3-16 VBASICA

The VBASICA compiler does not support the ALL, MERGE,
DELETE, and < line expr > options to CHAIN. Use the statement
format CHAIN < filename > . If you want to maintain compatibility
with the VBASICA Compiler, use COMMON to pass variables and do
not use overlays. The CHAIN statement leaves the files open during
CHAINing.

When vou use the MERGE option, put user-defined functions ahead
of any CHAIN MERGE statements in the program. Otherwise, the
user-defined functions are undefined after the merge is complete.

CHDIR Command

FORMAT:

CHDIR < pathname >
PURPOSE:
Changes the current directory, for VBASICA 2.0 and later releases.
REMARKS:
< pathname > is a string expression specifying the name of the new
directory. The string expression can be a control or variable. CHDIR
works exactly like the DOS command CHDIR. The < pathname >

must be a string of less than 63 characters.

EXAMPLE: This line makes SALES the current directory:

CHDIR "SALES"

VBASICA Statements, Commands, and Functions 3-17

This line changes the current directory to USERS on drive B. It does
NOT, however, change the default drive to B:

CHDIR "B:USERS"

The following lines change the current directory to the directory
DATA one level below the root directory on the current drive:

PATH$="\DATA"
CHDIR PATH$

Also see the MKDIR and RMDIR statements. See the DOS 2.1 Refer-
ence for a complete discussion of directories.

CHRS$ Function

FORMAT:
CHRS$(I)
PURPOSE:

Returns a string whose one element has ASCII code 1. Refer to Appen-
dix C for a listing of ASCII codes. CHR$ is commonly used to send a
special character to the screen. For example, you can send the BEL
character (CHR$(7)) as a preface to an error message, or you can send
a form feed (CHR$(12)) to clear a screen and return the cursor to the
home position.

See the CHR$ function for ASCII-to-numeric conversion.
EXAMPLE:

PRINT CHR$(66)
B
Ok

3-18 VBASICA

CINT Function

FORMAT:
CINT(X)
PURPOSE:

Converts X to an integer by rounding the fractional portion. An
“Qverflow” error occurs if X is not in the range — 32768 to 32767.

Use CDBL and CSNG to convert numbers to the double- and single-
precision data type. Use FIX and INT to return integers.

EXAMPLE:
PRINT CINT (45.67)

46
Ok

CIRCLE Statement

FORMAT:

CIRCLE (< xcenter > , < ycenter >), < radius >
[, < attribute > [, < start >, <end > [, < aspect >]]]

PURPOSE:

Draws an ellipse with center (< xcenter >, < ycenter >) and radius
< radius > for graphics only.

REMARKS:
< xcenter > is an integer expression for the x-coordinate of the center

of the ellipse.

VBASICA Statements, Commands, and Functions 3-19

< ycenter > is an integer expression for the y-coordinate of the center
of the ellipse.

< radius > is an integer expression for the radius of the ellipse.

< attribute > is an expression returning the value 0 to 3; the value
determines the color of the ellipse. An attribute of 0 draws an ellipse of
the background color.

< start > and < end > specify where the drawing of the ellipse begins

and ends. The angles are positioned in the standard mathematical way,
with 0 to the right and going counterclockwise:

Pl/2

Pl 0.2%P1

3*P1/2

If the start or end angle is negative (— 0 is not allowed), the ellipse is
connected to the center point with a line. The angles are treated as if
positive (not the same as adding 2*PI). The start angle can be greater
or less than the end angle.

VBASICA clips points off the screen.

3-20 VBASICA

EXAMPLE:
The following example:

10 PI=3.14593
20 SCREEN 1
S0 CIRCLE (160,100).60.. ,<PL,=PL/2

draws a part of a circle similar to the following:

< aspect > is the ratio of the x radius to the y radius. The default
aspect ratio is 5.25/8.00 in high-resolution, and gives a visual circle,
assuming a standard screen aspect ratio.

VBASICA Statements, Commands, and Functions 3-21

CLEAR Command

FORMAT:
CLEAR [,[<exprl>][, <expr2>]]
PURPOSE:

Sets all numeric variables to zero, all string variables to null, and closes
all open files. CLEAR optionally sets the end of memory and the
amount of stack space.

<exprl > is a memory location that sets the highest location avail-
able for use by VBASICA.

<expr2 > sets aside stack space for VBASICA. The default 1s 256
bytes or one-eighth of the available memory, whichever is smaller.

REMARKS:

VBASICA allocates string space dynamically. An “Out of string space”
error occurs if no free memory is left.

VBASICA supports the CLEAR statement with the restriction that
<exprl > and <expr2 > must be integer expressions. If you give a
value of 0 for either expression, VBASICA uses the appropriate
default. The default stack size is 256 bytes, and the default top of
memory is the current top of memory.

With VBASICA, the CLEAR statement:

p Closes all files.

p Clears all COMMON and user variables.

P Resets the stack and string space.

» Releases all disk buffers.

3-22 VBASICA

EXAMPLES:
CLEAR
CLEAR ,32768
CLEAR ,,2000

CLEAR ,32768,2000

CLOSE Statement

FORMAT:
CLOSE[[#] < filenum > [,[#] < filenum ...>1]]
PURPOSE:
Concludes I/O to a disk file.
REMARKS:

< filenum > is the number under which the file was OPENed. A
CLOSE without arguments closes all open files.

The association between a particular file and file number ends when
you execute a CLOSE. You can open the file with the same or a
different file number, and you can reuse the file number to OPEN any
file.

With sequential output files, a CLOSE writes the final buffer of output.

The END statement and the NEW command CLOSE all disk files
automatically. STOP does not close disk files.

VBASICA Statements, Commands, and Functions 3-23

CLS Statement

FORMAT:
CLS

PURPOSE:

Erases the current active screen and locates the cursor at the upper left
corner of the screen.

REMARKS:

1. In Mode 0, the monochrome screen is cleared to white, black, or
underlined, depending on the current background color. The color
screen is cleared to the current background color.

2. You can also clear the screen by pressing the CTRL-L key.

3. NOTE: The SCREEN and WIDTH statements force a screen clear
if the resultant screen mode created differs from the current mode.

COLOR Statement

Screen Mode 0
FORMAT:

COLOR [< foreground >] [, [< background >] [, < border >]]

PURPOSE:

The COLOR statement selects the foreground, background and border
colors.

3-24 VBASICA

REMARKS:

< foreground > is an unsigned integer from O to 31 that determines
the character color, with values greater than 15 blinking.

< background > is an unsigned integer from 0 to 7 that determines
the color over which the character is placed. <border> 1is an
unsigned integer from 0 to 15 that determines the color around the
border of the screen, if you are using a color screen. If you are using
the standard screen, VBASICA ignores this parameter.

On a color screen, COLOR selects colors according to Table 3-1.

Table 3-1: Colors for Color Screen

LOW HIGH
INTENSITY COLOR INTENSITY COLOR
0 black 8 dark gray
1 blue 9 high-intensity blue
2 green 10 high-intensity green
3 cyan 11 high-intensity cyan
4 red 12 high-intensity red
5 magenta 13 high-intensity magenta
6 brown 14 yellow
7 white 15 intense white

If < foreground > is less than 8, low-intensity colors are displayed;
otherwise, high-intensity colors are displayed.

On the standard screen, the COLOR statement selects reverse video
(black on white), underlined, or highlighted characters.

Table 3-2 shows the effects you can obtain with the specified com-
binations of foreground and background colors.

VBASICA Statements, Commands, and Functions 3-25

Table 3-2: Foreground/Background Combinations

FOREGROUND BACKGROUND EFFECT
7 0 Normal, white on black
1 0 Underline, white on black
0 T Reverse, black on white
15 0 Highlight, white on black
9 0 Highlight, underline,

white on black
Reverse highlight
Invisible (black)

< oo
|

1. Any values entered outside these ranges result in the “Overflow™ or
“Illegal function call” error. COLOR retains previous values.

2. You can omit any parameter. Omitted parameters assume the
previously selected value.

3. The COLOR statement cannot end with a comma. If it does, a
“Syntax Error” will result.

4. In Alpha mode, foreground color values 0 through 7 select character
color, values 8 through 15 set the intensity bit, and values 16
through 31 set the blink bit for the character.

In Screen Mode 0, executing the COLOR statement affects only the
colors of subsequently written characters.

EXAMPLE:

100 COLOR 0,7 'reverse video
110 COLOR ,0 ‘'invisible characters

3-26 VBASICA

Screen Mode 1
FORMAT:

COLOR [< background >, < palette >]
PURPOSE:
Selects the colors displayed on the screen.
REMARKS:

NOTE: In this mode, the color statement does not affect the standard
screen.

For the color screen, the various drawing statements (PSET, LINE,
and so on) allow you to specify a color attribute from O through 3.
Color attribute 0 requests the background color, and color attributes
1-3 request foreground colors. The COLOR statement determines how
these numbers are mapped to actual colors on the screen.

< background > is an unsigned integer from 0 to 15. It determines
the background color and the intensity of the display according to
Table 3-1.

< palette > is either 0 or 1. If <palette> is 0, or even, the
foreground colors are the following:

Color Attribute Color
1 2 (or 10) green
i) 4 (or 12) red
3 6 (or 14) brown

VBASICA Statements. Commands, and Functions 3-27

If < palette > is 1, or odd, the foreground colors are the following:

Color Attribute Color
1 3(or 11) cyan
2 5 (or 13) magenta
3 7 (or 15) white

In Screen Mode 1, executing the COLOR statement immediately
affects the colors on the entire screen.

In this mode, COLOR selects the background color and a three-color
palette, any of which can be used with the graphics statements PSET,
PRESET, CIRCLE, LINE, PAINT, and DRAW.

EXAMPLE:
120 COLOR 4,0 'red background,
green/red/yellow foreground
Screen Mode 2

The COLOR statement is illegal in this mode.

3-28 VBASICA

COM Statement

FORMAT:

COM(<n>) ON
COM(< n>) OFF
COM(<n>) STOP

PURPOSE:

Enables or disables trapping of communications activity to the
indicated serial port.

REMARKS:

You must execute a COM(< n >) ON statement to allow trapping by
the ON COM(<n>) statement. After COM(<n>) ON, if you
specify a nonzero line number in the ON COM(<n>) statement,
every time VBASICA starts a new statement it checks if any characters
have been input from the serial port.

If COM(< n >) is OFF, no trapping takes place and the event is not
remembered even if it does take place.

If a COM(<n>) STOP statement is executed, no trapping can take

place. If any data comes in through the serial port, it is remembered
and an immediate trap occurs when COM(< n >) ON is executed.

VBASICA Statements, Commands, and Functions 3-29

EXAMPLE:

10 PORT.A = 1
20 COM(PORT.A) ON 'enable com trapping on port a

100 COM(PORT.A) STOP 'temporarily disable trapping

300 COM(PORT.A) ON 'enable trapping immediately

500 COM(PORT.A) OFF 'disable trapping & forget events

COMMON Statement

FORMAT:

COMMON < varlist >
PURPOSE:
Passes variables to a CHAINed program.
REMARKS:
Use the COMMON statement with the CHAIN statement. Although
COMMON statements can appear anywhere in a program, put them at
the beginning.
The same variable cannot appear in more than one COMMON
statement. Specify array variables with a pair of parentheses at the end

of the variable name. If all variables are to be passed, use CHAIN with
the ALL option and omit the COMMON statement.

3-30 VBASICA

EXAMPLE:

100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3", 10

CONT Command

FORMAT:
CONT
PURPOSE:

Continues program execution after you type a CTRL-C or after
VBASICA executes a STOP or END statement.

REMARKS:

Execution resumes at the point where the break occurs. If the break
occurs after a prompt for an INPUT statement, the program resumes
execution by displaying the prompt or prompt string.

CONT is usually used with STOP during debugging. When execution
stops, you can examine and change intermediate values using Direct
mode statements. Resume execution with CONT or a Direct mode
GOTO, which resumes execution at a specified line number. Use
CONT to continue execution after an error.

CONT is invalid if the program was edited during the break.

VBASICA Statements, Commands, and Functions 3-31

EXAMPLE:

10 INPUT A, B, €
20 K=A"2%*5.3:L=8"21.26
30 STOP
40 M=C*K=100: PRINT M
RUN
vl 3
BREAK IN 30
Ok
PRINT L
30.7692
Ok
CONT
11519
Ok

COS Function

FORMAT:
COS(X)
PURPOSE:

Returns the cosine of X in radians. The calculation of COS(X) is done
in single-precision.

EXAMPLE:

10 X =2*C0S(.4)
20 PRINT X
RUN
1.842122
0k

3-32 VBASICA

CSNG Function

FORMAT:
CSNG(X)
PURPOSE:
Converts X to a single-precision number.

Use CINT and CDBL to convert numbers to the integer and double-
precision data types.

EXAMPLE:

10 A# = 975.34217#
20 PRINT A#; CSNG(A#)
RUN

975.34217 975.341
Ok

VBASICA Statements, Commands, and Functions 3-33

CSRLIN Variable

FORMAT:
x = CSRLIN
PURPOSE:

Returns the current line or row position of the cursor in the currently
active page.

REMARKS:
The value returned is from 1 to 25.
x = POS(0) returns the column location of the cursor.

Refer to the LOCATE statement to see how to set the cursor line.

EXAMPLE:
10 ROW = CSRLIN 'Record current line.
20 COL = POS(0) 'Record current column.
30 LOCATE 24,1
40 PRINT "HELLO" 'Print HELLO on last line

50 LOCATE ROW,COL 'Restore pos. to old line, column

3-34 VBASICA

CVI, CVS, and CVD Functions

FORMAT:

CVI(< 2-byte string >)
CVS(< 4-byte string >)
CVD(< 8-byte string >)

PURPOSE:

Converts string values to numeric values. Converts numeric values
read in from a random disk file from strings into numbers. CVI con-
verts a 2-byte string to an integer. CVS converts a 4-byte string to a
single-precision number. CVD converts an 8-byte string to a double-
precision number.

EXAMPLE:

70 FIELD #1,4 AS N$, 12 AS B$, ...
80 GET #1
90 Y=CVS(N$)

VBASICA Statements, Commands, and Functions 3-35

DATA Statement

FORMAT:
DATA <list>

PURPOSE:

Stores the numeric and string constants accessed by the program’s
READ statement(s).

<list > is a list of constants containing numeric constants in any for-
mat: fixed-point, floating-point, or integer. Numeric expressions are
not allowed in the list. Surround string constants with double quota-
tion marks only if they contain commas, colons, or significant leading
or trailing spaces.

REMARKS:

DATA statements are nonexecutable statements and can be put any-
where in a program. A DATA statement can contain as many con-
stants, separated by commas, as fit on a line. A program can contain
any number of DATA statements.

READ statements access a program’s DATA statements in order by
line number. Consequently, a series of DATA statements can be
regarded as one continuous list of items, regardless of the location of
each DATA statement.

The variable type, numeric or string, given in a READ statement must
agree with the corresponding constant in the DATA statement.

DATA statements can be reread from the beginning by using the
RESTORE statement.

3-36 VBASICA

EXAMPLE:

The following program segment READs the values from the DATA
statements into the array A. After execution, the value of A(1) is 3.08,
and so on.

80 for: I=1 TO 10

90 READ A(I)

100 NEXT I

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program READs string and numeric data from the DATA state-
ment in line 30:

LIST
L0 -ERINT “WCETYY, "STATEY, “ZIp"
20 READ C$,5%.2

30 DATA "DENVER,", "COLORADO", 80211
40 PRINT C$%,S$,Z

0K

RUN

CITY STATE ZIP

DENVER, COLORADO 80211

Ok

VBASICA Statements, Commands, and Functions 3-37

DATES Variable and Statement

FORMAT:

DATE$ = < string expr> Sets the current date.
< string expr> = DATE$ Gets the current date.

PURPOSE:

Sets or retrieves the current date.

REMARKS:

< string expr > is a valid string literal or variable.

VBASICA fetches and assigns the current date to the string variable if
DATES is the expression in a LET or PRINT statement.

VBASICA stores the date if DATES is the target of a string assign-
ment.

RULES:

1. If <string expr > is not a valid string, the “Type mismatch™ error
results. DATES$ retains previous values.

2. For <string var> = DATES, DATE$ returns a 10-character
string in the form “mm-dd-yyyy”, where mm is the month (01 to
12), dd is the day (01 to 31), and yy is the year (1980 to 2099).

3. For DATE$ = < string expr>, <string expr > can take one of
the following forms:
“mm-dd-yy”
“mm/dd/yy”

“mm-dd-yyyy”
“mm/dd/yyyy”

If any of the values are out of range or missing, VBASICA issues the
“Illegal function call” error. DATES retains any previous date.

3-38 VBASICA

EXAMPLE:

DATE$ = "10-21-82"
Ok

PRINT DATE$
10-21-1982

Ok

DEF FN Statement

FORMAT:

DEF FN < name > [(< parlist >)] = <func def >
PURPOSE:
Defines and names a user-written function.
REMARKS:

< name > is a legal variable name. This name, preceded by FN,
becomes the name of the function.

< parlist > are the variable names in the function definition, which
are replaced when VBASICA calls the function. Commas separate the
items in the list.

< func def > is a one-line expression that operates the function. Vari-
able names appearing in this expression define the function. They do
not affect program variables with the same name.

A variable name in a function definition might or might not appear in
the parameter list. If it does appear, VBASICA supplies the value of
the parameter when the function is called. Otherwise, it uses the
current value of the variable.

VBASICA Statements, Commands, and Functions 3-39

The variables in the parameter list represent—on a one-to-one basis—
the argument variables or values given in the function call.

User-defined functions can be numeric or string. If a type is specified
in the function name, VBASICA forces the value of the expression to
that type before it returns it to the calling statement. A “Type
mismatch” error occurs when a type specified in the function name
does not match the argument type.

Execute a DEF FN statement before calling the function it defines. If
you call a function before it is defined, an “Undefined user function”
error occurs. DEF FN is illegal in Direct mode.

EXAMPLE:

In the following example, line 410 defines the function FNAB. The
function is called in line 420:

410 DEF FNAB (X,Y)=X"3/Y"2
420 T=FNAB (I,J)

3-40 VBASICA

DEF SEG Statement

FORMAT:

DEF SEG [= < address >]

PURPOSE:

Assigns the current segment address referenced by a subsequent CALL
or POKE statement or by USR or PEEK functions.

REMARKS:

< address > is a valid numeric expression returning an unsigned
integer from 0 to 65535. VBASICA saves the < address> specified
for use as the segment required by the PEEK, POKE, and CALL state-
ments.

RULES:

Any value entered outside this range results in an “Illegal function
call” error. DEF SEG retains the previous value.

. If you omit the address option, the segment used is set to

VBASICA'’s data segment. This value is the initial default.

. If you give the address option, it should be a value based on a 16-

byte boundary. For PEEK, POKE, or CALL statements, VBASICA
shifts the value left four bits to form the code segment address for
the subsequent call instruction. VBASICA does not perform addi-
tional checking to ensure that the resultant segment + offset value
1s valid.

Refer to the POKE statement for information on the special
interpretation of segment &HFFFF.

. NOTE: DEF and SEG must be separated by a space. Otherwise,

VBASICA interprets the statement DEFSEG = 100 to mean:
*“assign the value 100 to the variable DEFSEG.”

VBASICA Statements, Commands, and Functions 3-41

EXAMPLE:

10 DEF SEG=0 'Set segment to interrupt table
20 DEF SEG 'Restore segment to VBASICA's DS.

DEFtype Statement
FORMAT:

DEF <type > <range>
PURPOSE:

Declares variable types as integer, single-precision, double-precision, or
string.

REMARKS:

<type > is INT, SNG, DBL, or STR.

< range > is a range of letters (A-Z).

A DEF < type > statement declares that variable names beginning
with the specified letter(s) are of the type specified. A type-declaration
character always takes precedence over a DEF <type > statement
when assigning a type to a variable.

If a program does not contain type-declaration statements, VBASICA

assumes that all variables without declaration characters are single-
precision variables.

3-42 VBASICA

EXAMPLE:

In this example, all variables beginning with the letters L, M, N, O,
and P are double-precision variables:

10 DEFDBL L-P

This statement declares that all variables beginning with the letter A
are string variables:

10 DEFSTR A

In the following statement all variables beginning with the letters I
through N and W through Z are integer variables:

10 DEFINT I-N, W-2Z

DEF USR Statement

FORMAT:

DEF USR[< digit >]= <int expr>
PURPOSE:
Specifies the starting address of an assembly language subroutine.
REMARKS:
< digit> is any digit from 0 to 9. The digit corresponds to the
number of the USR routine whose address is specified. If you omit

< digit >, VBASICA assumes DEF USR.

< int expr> is the value of the starting address of the USR routine.
(See Appendix E.)

VBASICA Statements, Commands, and Funclions 3-43

Any number of DEF USR statements can appear in a program to
redefine subroutine starting addresses. This allows access to as many
subroutines as necessary.

EXAMPLE:

200 DEF USR=24000
210 X=USR (Y*2/2.89)

DELETE Command
FORMAT:

DELETE[<line1 >][— <line2 >]
PURPOSE:
Deletes program lines.
REMARKS:

<linel > and <line2 > are the numbers of two different program
lines.

VBASICA always returns to command level after it executes a

DELETE. An *“lllegal function call” error occurs if <linel > or
<line2 > do not exist.

3-44 VBASICA

EXAMPLE:

This statement deletes line 40:
DELETE 40

This statement deletes lines 40 through 100, inclusive:
DELETE 40-100

This final statement deletes all lines up to and including line 40:

DELETE-40

DIM Statement

FORMAT:
DIM < varlist >

PURPOSE:

Specifies the maximum values for array variable subscripts and allo-
cates storage accordingly.

REMARKS:
< varlist > is a list of subscripted variables.

If you use an array variable name without including a DIM statement,
VBASICA assumes that the maximum value of its subscript(s) is 10. If
you use a subscript greater than the maximum specified, a “‘Subscript
out of range” error occurs. The minimum value for a subscript is
always 0, unless specified otherwise with the OPTION BASE state-
ment.

VBASICA Statements, Commands, and Functions 3-45

The DIM statement gives all elements of the specified arrays an initial
value of zero.

EXAMPLE:

10 DIM A (20)
20 FOR I=0 TO 20
30 READ A (I)

40 NEXT I

DRAW Statement

FORMAT:
DRAW < string exp >
PURPOSE:

Draws a complex object as specified by < string exp > for graphics
only.

REMARKS:

< string exp> is a string expression returning a valid formatted
string, using the movement commands.

DRAW combines most of the capabilities of the other graphics state-
ments into an easy-to-use object definition language called Graphics
Macro Language (GML). A GML command is a single character
within a string, optionally followed by one or more characters.

3-46 VBASICA

Movement Commands

Each of the following movement commands begin movement from the
current graphics position. This position is usually the coordinate of the
last graphics point plotted with another GML command, LINE, or
PSET. The current position defaults to the center of the screen when a
program is run. Rcier to Chapter 1.1.2 for more information on
screens.

Table 3-3: Movement Commands

COMMAND ACTION
U [=nz=] Move up (scale factor * n) points
D<= Move down
I [<nz| Move left
B [<'n2>] Move right
E [=n>] Move diagonally up and right
H[<n>] Move diagonally up and left
G [<n>] Move diagonally down and left
F [=<n>] Move diagonally down and right
M <xy> Move absolute or relative. If you precede x by + or —, VBASICA

adds x and v to the current position. VBASICA connects the new
point with the current position by a line. Otherwise. it draws a line
from the current position to the point x.y.

NOTE: The commands move one unit if you supply no argument.

The commands listed in Table 3-4 can precede any of the movement
commands.

VBASICA Statements, Commands, and Functions 3-47

Table 3-4: Prefixes to Movement Commands

PREFIX

ACTION

A <n>

TA <n>

C<n>

S <nz>

X <string >

P paint,boundary

Move but don’t plot any points.
Move but return to original position when done.

Set angle n. n is from 0 to 3, where 0 is zero degrees; 1 is 90: 2 is
180; and 3 is 270. VBASICA scales figures rotated 90 or 270
degrees so that they appear the same size as with 0 or 180
degrees on a screen with the standard aspect ratio of 3 to 2.

Turn angle n. The value of n is from — 360 to + 360. If n is
positive (+), the angle turns counterclockwise. If n is negative
(—), the angle turns clockwise. Values entered outside of the
range — 360 to + 360 cause an “Illegal function call” error.
This command 1s valid for VBASICA version 2.0 and later
releases.

Set attribute n. n is from 0 to 3 in medium-resolution, and 0 to |
in high-resolution.

Set scale factor, n is from | to 255. VBASICA multiplies the
scale factor by the distances given with U, D, L, R, or relative M

commiands b determine-thé actual distance traveled,

“Execute substring (not supported by VBASICA compiler). You

can execute a second substring from a string with this command,
much like GOSUB in BASIC. You can have one string execute
another, which executes a third, and so on.

Set figure color to paint and border color to boundary. The paint
parameter is an integer expression. It chooses an attribute range
for the current screen mode. In medium resolution, this color is
one from the current palette (0-3), defined by the COLOR
statement. In high resolution, two color attributes (0 = black
and 1 = white) are available.

The boundary parameter is the border color of the figure to be
filled, in the attribute range for the current screen mode. You
must specify both paint and boundary, or an error results. This
command does not support paint tiling, and is valid for
VBASICA 2.0 and later releases.

Numeric arguments can be constants like 123 or = variable:,
where variable is the name of a variable (not supported by
VBASICA compiler).

VBASICA clips points off the screen.

3-48

VBASICA

EXAMPLE:
To draw a box:
10 SCREEN 2 'must be in graphics mode
20 SIDE.LEN = 50 'set the length of each side
30 DRAW "U=SIDE.LEN:R=SIDE.LEN;D=SIDE.LEN;L=SIDE.LEN;"

To draw a triangle:

10 SCREEN 2 'must be in graphics mode
20 DRAW "E15;F15;L30"

EDIT Command

FORMAT:

EDIT <line number >

EDIT <.>
PURPOSE:
With the Full Screen Editor, the EDIT statement displays the line
specified and positions the cursor under the first digit of the line
number. The line can then be modified using the keys described in
Chapter 2.3.
REMARKS:
< line number > is the program line number of a line existing in the
program. If no such line exists, VBASICA displays line exists, the

“Undefined Line Number” error message.

< .> always gets the last line referenced by an EDIT statement, LIST
command, or error message.

VBASICA Statements, Commands, and Functions 3-49

END Statement
FORMAT:

END
PURPOSE:

Stops program execution, closes all files, and returns to command
level.

REMARKS:

END statements can occur anywhere in the program. Unlike the
STOP statement, a BREAK message does not appear with END. An
END statement at the end of a program is optional. VBASICA always
returns to the command level after END.

EXAMPLE:

520 IF K>1000 THEN END ELSE GOTO 20

3-50 : VBASICA

ENVIRON Statement

FORMAT:
ENVIRON < string >
PURPOSE:
Modifies a parameter in VBASICA’s Environment String Table.
REMARKS:

<string > is a string expression. The value of the expression must be
of the form < parameter-id > = <text>, or < parameter-id >
<text > . Everything to the left of the equal sign or space is assumed
to be a parameter, and everything to the right is assumed to be text.

If the parameter-id did not exist in the Environment String Table. it is
appended to the end of the table. If the parameter-id exists on the table
when the ENVIRON statement is executed, the existing parameter-id
1s deleted and the new one appended to the end of the table.

The text string is the new parameter text. If the text is a null string
("), or consists only of a semicolon (;), ENVIRON removes the
existing parameter-id from the Environment String Table, and
compresses the remaining body of the file.

This statement can change the PATH parameter for a child process, or
pass parameters to a child by inventing a new Environment parameter.
Refer to the DOS PATH command.

Errors include parameters that are not strings and an “Out of

memory” when no more space can be allocated to the Environment
String Table. The table usually has very little free space.

VBASICA Statements, Commands, and Functions 3-51

EXAMPLE:

The following VBASICA command ¢reates a default PATH to the root
directory on drive A:

PATH=A:

The PATH can be changed to a new value:
ENVIRON "PATH=A:SALES;A:ACCOUNTING"

A new parameter can be added to the Environment String Table:
ENVIRON "SESAME=PLAN"

The Environment String Table now contains:

PATH=A:SALES; A: ACCOUNTING
SESAME=PLAN

If you then enter:
ENVIRON "SESAME=;"

you delete SESAME, and you have a table containing:
PATH=A:SALES;A: ACCOUNTING

Refer to the ENVIRONS function and the SHELL command.

3-52 VBASICA

ENVIRONS$ Function

FORMAT:

ENVIRONS$ (< string parameter >)
ENVIRONS$ (<n>)

PURPOSE:

Retrieves a parameter string from VBASICA’s Environment String
Table.

REMARKS:
< n > is an integer.

The string result returned by the ENVIRONS function cannot exceed
255 characters. If a parameter name is specified, and it cannot be
found or it has no following text, ENVIRONS returns a null string.
When the parameter name is specified, ENVIRONS$ returns all the
associated text that follows < parameter> = in the Environment
String Table.

If the argument is numeric, ENVIRONS$ returns the nth string in the
Environment String Table. The string includes all the text, including
the parameter name. If the nth string does not exist, ENVIRON$
returns a null string.
EXAMPLE:

100 R$=ENVIRONS$ ("PATH")
Returns the current path text and stores it in string variables RS$.

100 PRINT ENVIRON$(2)

Prints the second environment parameter and text on the video
display.

VBASICA Statements, Commands, and Functions 3-53

EOF Function

FORMAT:

EOF (< filenum >)

PURPOSE:

Returns — | (true) when the end of a sequential file is reached. Use
EOF to test for end-of-file while using INPUT to avoid “Input past
end” errors.

EXAMPLE:

10
20
30
40
50

3-54

OPEN "I",1,"DATA"
C=0

IF EOF(1l) THEN 100
INPUT #1,M(C)
C=C+1:GOTO 30

VBASICA

ERASE Statement
FORMAT:

ERASE < array list >
PURPOSE:
Eliminates arrays from a program.

REMARKS:

Arrays can be redimensioned after they are ERASEd, or the previously
allocated array space in memory can be used for other purposes. A
“Duplicate Definition” error occurs if you try to redimension an array
without first ERASEing it.

EXAMPLE:

450 ERASE A, B
460 DIM B(99)

VBASICA Statements, Commands, and Functions 3-55

ERDEY and ERDEVS$ Functions

FORMAT:

ERDEV
ERDEV$

PURPOSE:

Provides a way to obtain device-specific status information. ERDEYV is
an integer function that contains the error code returned by the last
device to declare an error. ERDEVS is a string function that contains
the name of the device driver that generated the error.

REMARKS:

You cannot set these functions. ERDEYV is set by the Interrupt X’'24’
handler when an error within DOS is detected.

ERDEYV contains the INT 24 error code in the lower eight bits.
EXAMPLE:

If a user-installed device driver, MYLPT2, ran out of paper, and the
driver’s error number for that problem was 9, then

PRINT ERDEV, ERDEV$
yields

9 MYLPTZ2

3-56 VBASICA

ERR and ERL Variables

FORMAT:

ERR
ERL

REMARKS:

The ERR and ERL variables are used in error-handling subroutines.
Refer to the ON ERROR GOTO statement. ERR contains the error
code for the error, and ERL contains the number of the line in which
the error was detected. ERR and ERL are usually used in IF...THEN
statements to direct program flow in the error-trap routine.

If the statement that caused the error was a Direct mode statement,
ERL contains 65535. To test if an error occurred in a Direct
statement, use the following:

IF 65535 = ERL THEN
Otherwise, use:

IF ERR = error code THEN ...
IF ERL = line number THEN ...

If the line number does not appear to the right of the relational
operator, it cannot be renumbered by RENUM. Because ERL and
ERR are reserved variables, neither can appear to the left of the equal
sign in a LET (assignment) statement.

VBASICA Statements, Commands, and Functions 3-57

ERROR Statement

FORMAT:
ERROR <int expr>

PURPOSE:

Simulates the occurrence of a VBASICA error or allows the user to
define the error codes.

REMARKS:
< int expr > is an integer expression.

The value of <int expr > must be greater than 0 and less than 255, If
the value equals that of an error message VBASICA already uses, the
ERROR statement simulates the occurrence of that error, and
VBASICA prints the corresponding error message.

To define your own error code, use a value greater than any used by
the VBASICA error codes. (Use a very high value to prevent
duplication when more error codes are added to VBASICA.) Your new
error code can then be conveniently handled in an error-trap routine.

If an ERROR statement specifies a code for which no error message
exists, VBASICA responds with the message ‘“‘Unprintable Error.”
Execution of an ERROR statement for which there is no error-trap
routine causes an error message to appear and execution to stop.

3-58 VBASICA

EXAMPLE:

In the following example, you type the second line; VBASICA
responds with the third line:

LEST

10 8 10

20T = B

30 ERROR 5 = T

40 END

Ok

RUN

String too long in- 30

or, in Direct mode:

Ok

ERROR 15
String tooc long
Ok

VBASICA Statements, Commands, and Functions 3-59

EXP Function

FORMAT:
EXP(X)
PURPOSE:

Returns ¢ to the power of X. X must be less than or equal to 87.3365.
If EXP overflows, the “Overflow™ error message is displayed. Machine
infinity with the appropriate sign is supplied as the result, and
execution continues.

EXAMPLE:

10 X=5

20 PRINT EXP(X-1)
RUN

54.59815

Ok

3-60 VBASICA

FIELD Statement

FORMAT:
FIELD[#] < filenum >, <width> AS <str var> ..
PURPOSE:
Allocates space for variables in a random file buffer.
REMARKS: 3
< filenum > is the number under which the file was OPENed. -
< width > is the number of characters to be allocated to <str var > .
< str var > Is a string variable.

A FIELD statement retrieves data from a random buffer after a GET,
or enters data before a PUT.

EXAMPLE:

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$
allocates the first 20 positions (bytes) in the random file buffer to the
string variable N$, the next 10 positions to ID$, and the next 40
positions to ADDS$. FIELD does not put any data in the random file
buffer.
Refer to LSET/RSET and GET.
The number of bytes allocated in a FIELD statement must not exceed
the record length specified when the file was OPENed. Otherwise, a

“Field overflow™ error occurs. The default record length is 128.

Any number of FIELD statements can be executed for the same file.
All executed statements are in effect at the same time.

VBASICA Statements, Commands, and Functions 3-61

Do not use a FIELDed variable name in an INPUT or LET statement
if a variable name is in the random file buffer. If you execute a
subsequent INPUT or LET statement that uses this variable name, the
variable’s pointer moves to string space.

FILES Statement

FORMAT:
FILES [< filespec >]
PURPOSE:
Prints the names of files residing on the specified disk.
REMARKS:

< filespec > includes either a filename or a pathname and optional
device designation.

If you omit < filespec >, VBASICA lists all the files on the currently
selected drive. <filespec> is a string formula which may contain
question marks (?) or asterisks (*) as wild cards. A question mark
matches any single character in the filename or extension. An asterisk
matches one or more characters starting at that position. The asterisk
is a shorthand notation for a series of question marks. You do not
need to use the asterisk to request all files on a drive. For example,

FILES: "B:"

If you give a filespec with no explicit path, the current directory is the
default.

3-62 VBASICA

EXAMPLE:

This statement shows all files on the current directory:
FILES

This statement shows all files with extension .BAS:
FILES "#*.BAS"

This statement shows all files on drive B:
FILES "B:%, *n

The next example shows all five-letter files whose names start with
“TEST” and end with the .BAS extension:

FILES: "TEST?.BAS"
If SALES is a subdirectory of the current directory, this statement
displays SALES < dir > . If SALES is a file in the current directory.
this statement displays SALES:

FILES "\SALES"

This statement displays MARY < dir> if MARY is a subdirectory of
SALES. If MARY is a file, the statement displays its name.

FILES "\SALES\MARY"

VBASICA Statements, Commands, and Functions 3-63

FIX Function

FORMAT:
FIX(X)
PURPOSE:
Returns the truncated integer part of X.
REMARKS:

FIX(X) is equivalent to SGN(X)*INT(ABS(X)). The major difference
between FIX and INT is that FIX does not return the next lower
number for negative X.

EXAMPLES:

PRINT FIX(58.75)
58

0k

PRINT FIX(-58.75)
-58

Ok

3-64 VBASICA

FOR..NEXT Statement

FORMAT:

FOR <var> =x TO y [STEP z]

NEXT. [<var>][, <var>..]

PURPOSE:

Allows a series of instructions to be performed in a loop a given
number of times.

REMARKS:
X, y, and z are numeric expressions.
< var > 1s used as a counter.

The first numeric expression (x) is the initial value of the counter; the
second expression (v) is the final value of the counter. VBASICA exe-
cutes the program lines after the FOR statement until it encounters the
NEXT statement. Then, the counter is incremented by the amount
STEP specifies. VBASICA checks if the value of the counter exceeds
the final value (y). If y was not exceeded, VBASICA branches back to
the statement after the FOR statement and repeats the process. If y was
exceeded, execution continues with the statement following the NEXT
statement. The process just described is a FOR...NEXT loop.

If STEP is not specified, the increment is assumed to be one. If STEP
is negative, the final value of the counter is less than the initial value.
VBASICA decrements the counter each time the loop executes. The
loop executes until the value of the counter is less than the final value.

VBASICA Statements, Commands, and Functions 3-65

VBASICA skips the body of the loop if the initial value of the loop,
multiplied by the sign of the step, exceeds the final value times the sign
of the step.

FOR..NEXT loops can be nested; that is, one FOR..NEXT loop can
be put inside another loop. Each nested loop must have a unique vari-
able name as its counter. The NEXT statement of the inside loop must
appear before that of the outside loop. If nested loops have the same
end point, they can share a single NEXT statement.

If the NEXT statement references only one variable, that variable can
be omitted. In this case, the NEXT statement matches the most recent
FOR statement. If a VBASICA statement encounters a NEXT state-
ment before the corresponding FOR statement, VBASICA issues a
“NEXT without FOR™ error message and execution stops.

EXAMPLE:

10 K=10
20 FOR I=1 TO K STEP 2
30 K=K+10
40 PRINT I;
50 PRINT K
60 NEXT I
RUN

20

30

40

50

60
k

O W30 W~

In the following example, the initial value of the loop exceeds the final
value. The loop does not execute.

10 I=5

20 J=0

30 FOR I=I TO J
40 PRINT I

50 NEXT I

3-66 VBASICA

—

In the next example, the loop executes ten times:

10 X=5

20 FOR X=1 TO X=5

30 PRINT X;

40 NEXT X

RUN

I &'=4 '8 8§ "F B 9 10
Ok

VBASICA always sets the final value of the loop variable before setting
the initial value.

FRE Function

FORMAT:

FRE(0)
FRE(X$)

PURPOSE:

Arguments to FRE are dummy arguments. FRE returns the number of
memory bytes VBASICA is not using.

FRE (") forces a garbage collection before it returns the number of
unused bytes. Be patient—garbage collection can take up to 90
seconds. VBASICA does not usually collect garbage until all free
memory is used. By using FRE(””) periodically, you will have shorter
delays for each garbage collection.

EXAMPLE:

PRINT FRE(O)
14542
Ok

VBASICA Statements, Commands, and Functions 3-67

GET Statement for File I1/0

FORMAT:
GET [#] < file number > [, <record number >]
PURPOSE:
Reads a record from a random disk file into a random access buffer.
REMARKS:

< file number > is the number under which the file was OPENed. If
< record number > is omitted, the next record (after the last GET) is
read into the buffer. The largest possible record number is 16,777,215.

The GET and PUT statements allow fixed-length input and output for
VBASICA COM files. However, because of the low performance asso-
ciated with telephone line communications, we recommend that you
do not use GET and PUT for telephone communication.

EXAMPLE:

GET #1,75
NOTE: After VBASICA executes a GET statement, INPUT# and
LINE INPUT# may be executed to read characters from the random

file buffer. The EOF function may be used after a GET statement to
see if that GET was beyond the end of file marker.

3-68 VBASICA

GET and PUT Statements for COM

FORMAT:

GET < file number >, <nbytes >
PUT <file number >, < nbytes >

PURPOSE:

GET and PUT allow fixed-length 1/O for COM.

REMARKS:
< file number > is an integer expression returning a valid file number.

< nbytes > is an integer expression returning the number of bytes to
be transferred into or out of the file buffer. nbytes cannot exceed the
value set by the /S: switch when VBASICA was invoked.

Because of the low performance associated with telephone line com-
munication, you should not use GET and PUT in such applications.

EXAMPLE:

10 '*** Program to Send an ASCII file over Fort A
20 INPUT "Enter ASCII file to transmit:";FILNME$

30 OPEN "COM1:9600,0,7,1" AS #1 Yinit PORT A

40 OPEN "Output" ,#2, FILNME$, 128 'open ASCII file
50 WHILE NOT(EOF(2))

60 GET #1 'load the file buffer with a rec
70 PUT #2,128 'send the record out port A

80 WEND

90 CLOSE #1, #2

100 END

VBASICA Statements, Commands, and Functions 3-69

GET and PUT Statements for Graphics

FORMAT:

GET (< x1-coord >, < y1-coord >)-(< x2-coord >,
< y2-coord >), < array name >

PUT (< x1-coord >, <y1-coord >),
< array > [, < action verb >]

PURPOSE:

Reads (GET) or writes (PUT) pixels to or from an area of the screen.
REMARKS:

< x1-coord > and < yl-coord > are numeric expressions returning a
value in the integer range that specifies one corner of the rectangular
area.

< x2-coord > and < y2-coord > are numeric expressions returning a
value in the integer range that specifies the opposite corner of the rec-

tangular area.

< array name > is a previously dimensioned array to receive the
graphics points.

< array > is an array containing graphics information.
< action verb > is one of the following:
PSET, PRESET. AND, OR, XOR
The PUT and GET statements transfer graphics images to and from

the screen. PUT and GET make animation and high-speed object
motion possible in either Graphics mode.

3-70 VBASICA

The GET statement transfers the screen image into the array. The rec-
tangle described by the specified points bounds the screen image. You
define the rectangle in the same way as the rectangle drawn by the
LINE statement using the ,B option.

The array is a place to hold the image and can be of any type except
string. It must be dimensioned large enough to hold the entire image.
The contents of the array after a GET are meaningless when inter-
preted directly, unless the array is of type integer.

The PUT statement transfers the image stored in the array onto the
screen. The specified point is the coordinate of the top left corner of
the image. The “Illegal function call” error results if the image to be
transferred is too large to fit on the screen.

The action verb interacts the transferred image with the image already
on the screen. PSET transfers the data onto the screen verbatim.

PRESET is the same as PSET except that VBASICA produces a nega-
tive image, (black on whlte)

Use AND to transfer the 1mage onlv lf an |mage alreadv exists under
the transferred image. Use OR to superimpose the image onto the
existing image.

XOR inverts the points on the screen where a point exists in the array
image. This behavior is exactly like the cursor on the screen. XOR has
a unique property that makes it especially useful for animation: when
an image is PUT against a complex background twice, the background
is restored unchanged. Thus, you can move an object around the
screen without losing the background.

NOTE: The default action mode is XOR.
It is possible to GET an image in one mode and PUT it in another,

although the effect might be unusual because of the way points are
represented in each mode.

VBASICA Statements, Commands, and Functions 3-71

AND, OR, and XOR have the following effects on color:

AND OR
array screen attrib array screen attrib
attr 0 112 3 aftr ‘01 2.3
0 0
1 |
2 2
3 3

XOR
array screen attrib
atie. -0 1 2.3
0 01273

1 1032
2 230 1
5 A2l

Animation of an object can be performed as follows:
1. PUT the object(s) on the screen.
2. Recalculate the new position of the object(s).

3. PUT the object(s) on the screen a second time at the old location(s)
to remove the old image(s).

4. Return to step I, this time PUTting the object(s) at the new loca-
tion,

This type of movement leaves the background unchanged. Flicker can
be decreased by minimizing the time between steps 4 and 1, and by
ensuring enough time delay between steps 1 and 3. If more than one
object is being animated, process all objects at once, one step at a time.

3790 VBASICA

If you don’t have to preserve the background, you can perform anima-
tion by using the PSET action verb. Leave a border as large or larger
than the maximum distance the object will move around the image
when you first get it. Thus, when the object is moved, the border
effectively erases any points. This method can be faster than the
method using XOR because only one PUT is required to move an
object (although you must PUT a larger image).

VBASICA stores the information in the array as follows:

2 bytes giving x dimension in bits
2 bytes giving y dimension
The array data itself

The data for each row of pixels is left-justified on a byte boundary. If
there are less than a multiple of 8 bits stored, the rest of the byte is
filled with zeros. The required array size in bytes is the following:

4 + INT((x* < bits/pixel > + 7)/8)*y
where < bits/pixel > is 2 in screen mode 1, and 1 in screen mode 2.
The bytes per element of an array are the following:

2 for integer

4 for single precision

8 for double precision
For example, if you want to GET a 10-by-12 image into an integer
array, the number of bytes required is 4 + INT((10*2 + 7)/8)*12. or 40
bytes. Thus, you need an integer array with at least 20 elements.
You can examine the x and y dimensions and the data if you use an
integer array. The dimension is in element O of the array, and the y

dimension is in element 1. Integers are stored low byte first, then high
byte. The data is transferred high byte first (leftmost), then low byte.

VBASICA Statements, Commands, and Functions 3-73

GOSUB...RETURN Statements

FORMAT:

GOSUB < line >

RETURN

PURPOSE:

Branches program execution to a user-defined subroutine beginning at
< line > . Control returns to the main program when the subroutine
finishes executing.

REMARKS:
< line > is the number of the first line of the subroutine.

In a subroutine, the RETURN statement causes VBASICA to branch
back to the statement immediately after the most recent GOSUB state-
ment. A subroutine can be called any number of times in a program.
You can call a subroutine from within another subroutine. Only avail-
able memory limits the nesting of subroutines.

You can use subroutines anywhere in the program, but ensure that the
subroutine is easily distinguishable from the main program. You can
put a STOP, END, or GOTO statement before a subroutine to direct
program control around the subroutine, and to prevent entering the
subroutine by accident.

3-74 VBASICA

—

EXAMPLE:

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END

40 PRINT "SUBROUTINE";
50 PRINT "IN";

60 PRINT "PROGRESS"

70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

GOTO Statement
FORMAT:

GOTO < line >
PURPOSE:

Branches unconditionally out of the normal program sequence to a
specified line number.

REMARKS:

< line > is the line number of the statement branched to.

If <line> is an executable statement, VBASICA executes both it and
any following executable statements. If <line> is a nonexecutable

statement, execution starts at the first executable statement encoun-
tered after <line >.

VBASICA Statements, Commands, and Functions 3-75

EXAMPLE:

LIST

10 READ R

20 PRINT "R =";R,
30 A = 3.14*R"2

40 PRINT "AREA =";A
50 GOTO 10

60 DATA 5,7,12

Ok

RUN

R =25 AREA
R =17 AREA
R = 12 AREA
?0ut of DATA in 10
Ok

78.5
153.86
452 .16

3-76 VBASICA

HEX$ Function

FORMAT:
HEX$(X)
PURPOSE:

Returns a string that represents the hexadecimal value of the decimal
argument. VBASICA rounds X to an integer before evaluating
HEX$(X).

Use the OCT$ function for octal conversion.
EXAMPLE:

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X "DECIMAL IS" A$ "HEXADECIMAL"
RUN
232
32 DECIMAL IS 20 HEXADECIMAL
Ok

VBASICA Statements, Commands, and Functions 3-77

IF Statement

FORMAT:
IF <expr> THEN <stmnt>|<line> [ELSE < stmnt>|<line>]
IF <expr> GOTO <line> [ELSE < stmnt>|<line>]

PURPOSE:

Makes a decision regarding program flow based on the result an
expression returns.

REMARKS:
<stmt > is the statement or statements to be executed.
< line > is the line number branched to by the IF... THEN loop.

If the result of <expr> is not zero (true), the THEN or GOTO
clause is executed. THEN is followed by a line number (for branching),
or by one or more statements to be executed. GOTO is always fol-
lowed by a line number. If the result of <expr> is zero (false),
VBASICA ignores the THEN or GOTO clause and executes the ELSE
clause (if present). Execution continues with the next executable state-
ment. VBASICA allows a comma before THEN.

IF.. THEN...ELSE statements can be nested. Nesting is limited only by
the length of the line.

The following example is a legal statement:

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

3-78 VBASICA

If the statement does not contain equal numbers of ELSE and THEN
clauses, each ELSE is matched with the closest unmatched THEN. The
following statement does not print “A < > C” when A < > B:

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C'

If you are using direct mode and an IF...THEN statement is followed
by a line number, an “Undefined line” error results unless you already
entered a statement with the same line number while in Indirect mode.

If you use IF to test equality for a value that is the result of a floating-
point computation, remember that the internal representation of the
value may not be exact. Perform the test against the range over which
the accuracy of the value can vary.

EXAMPLE:
To test a computed variable A against the value 1.0, use the following;
IF ABS (A-1.0)<1.0E-6 THEN

This test returns true if the value of A is 1.0 with a relative error of less
than 1.0E — 6.

The following statement GETS the record number 1 if I is not zero:
200 IF I THEN GET#1l, I

In the following example a test determines if I is greater than 10 and

less than 20. If I is within this range, DB is calculated and execution

resumes at line 300. If I is not within the range, execution resumes at

line 110.

100 IF (I<20)*(I>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

VBASICA Statements, Commands, and Functions 3-79

In the following statement output goes to the screen or the line printer,
depending on the value of a variable (IOFLAG). If IOFLAG is zero,
output goes to the line printer; otherwise, output goes to the screen.

210 IF IOFLAG THEN PRINT A% ELSE LPRINT A$

INKEYS$ Variable

FORMAT:
INKEY$

PURPOSE:

Returns either a one-character string containing a character read from
your computer, or a null string (if no character is pending). No charac-
ters are echoed. VBASICA passes all characters through to the program
except for CTRL-C, which terminates the program. (With the
VBASICA compiler, CTRL-C is also passed through to the program.)

EXAMPLE:

1000 'TIMED INPUT SUBROUTINE

1010 RESPONSE$§=""

1020 FOR I%=1 TO TIMELIMIT%

1030 A$=INKEY$: IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=0 : RETURN
1050 RESPONSE$=RESPONSE$+A$

1060 NEXT I%

1070 TIMEOUT%=1 : RETURN

3-80 VBASICA

—

INP Function

FORMAT:
INP(I)
PURPOSE:

Returns the byte read from port I. INP is the complementary function
to the OUT statement.

REMARKS:
I is a valid machine port number from 0 to 65535.
EXAMPLE:
The following example:
100 A=INP (54321)
is equivalent to assembly language:

MOV DX, 54321
IN AL,DX

VBASICA Statements, Commands, and Functions 3-81

INPUT Statement

FORMAT:
INPUT[;][< “prompt” > (;,}] < varlist >
PURPOSE:
Allows keyboard input during program execution.
REMARKS:
< “”prompt” > is the text of a screen prompt.
< wvarlist > is a list of variables that will receive input data.

When VBASICA reaches an INPUT statement, program execution
pauses and VBASICA displays a question mark to indicate that you
must enter data. If <”prompt” > is included in the INPUT state-
ment, a prompt string appears before the question mark. Execution
resumes after you type the required data.

To suppress the question mark, put a comma after the prompt string
instead of a semicolon.

For example, the following statement prints "ENTER BIRTHDATE”
without a question mark:

INPUT "ENTER BIRTHDATE:",bB$

If INPUT is followed immediately by a semicolon, then the next
INPUT or PRINT statement is on the same line. VBASICA assigns the
data you enter to the variables in <Cvarlist >>. The number of data
items you supply must match the number of variables in the list.
Separate data items by commas.

3-82 VBASICA

The variable list can contain numeric or string variable names, includ-
ing subscripted variables. The type of each input data item must agree
with the type specified by the variable name. You need not assign
strings in an INPUT statement with quotation marks.

If you respond to INPUT with too many or too few items, or with the
wrong type of value (numeric instead of string, for example), the mes-
sage “’Redo from start” appears. Input values are not assigned until
you make an acceptable response.

EXAMPLE:

In these examples, you must enter data before the program finishes
executing:

10 INPUT X

20 PRINT X "SQUARED IS" X"2

30 END

RUN

75

5 SQUARED IS 25

Ok

LIST

10 PI=3.14

20 INPUT "WHAT IS THE RADIUS"

30 A=PI*R"2

40 PRINT "THE AREA OF THE C7 & IS A
50 PRINT

60 GOTO 20

Ok

RUN

WHAT IS THE RADIUS? 7.4

THE AREA OF THE CIRCLE IS 171.9464

VBASICA Statements, Commands, and Functions 3-83

INPUT# Statement

FORMAT:
INPUT# < filenum >, < varlist >
PURPOSE:

Reads data items from a sequential disk file and assigns those items to
program variables.

REMARKS:
< filenum > is the number used when the file is OPENed for input.

< varlist > contains the variable names assigned to the items in the
file. The variable type must match the type the variable name specifies.

INPUT# does not prompt you with a question mark. The data items
in the file should appear just as they would if you were typing data in
response to an INPUT statement. VBASICA ignores leading spaces,
carriage returns, and linefeeds when used as part of numeric values.
VBASICA assumes the first character that is not a space, carriage
return, or linefeed is the start of a number. The number must end on a
space, carriage return, linefeed, or comma.

VBASICA also ignores leading spaces, carriage returns, and linefeeds
when scanning the sequential data file for a string item. The first char-
acter that is not a space, carriage return, or linefeed is assumed to be
the start of a string item. If this first character is a quotation mark (”),
the string item consists of all characters read between the first quota-
tion mark and the second. A quoted string cannot contain a quotation
mark as a character. If the first character of the string is not a quota-
tion mark, the string is an unquoted string, and terminates on a
comma, carriage return, or linefeed (or after reading 255 characters). If
end-of-file is reached while a numeric or string item is being input, the
item is terminated.

3-84 VBASICA

o

INPUTS Function

FORMAT:
INPUTS(XL[[#1Y])
PURPOSE:

Returns a string of X characters, from the keyboard or from file
number Y. If the keyboard is used for input, no characters are echoed.
All Control characters are passed through except CTRL-C, which
interrupts the execution of the INPUT$ function.

EXAMPLE:

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE
IN HEXADECIMAL

10 OPEN"I",1,"DATA"

20 IF EOF(1) THEN 50

30 PRINT HEX$(ASC(INPUT$(1,#1))):

40 GOTO 20

50 PRINT

60 END

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUT$(1)

120 IF X$="P" THEN 500

130 IF X$="S" THEN 700 ELSE 100

VBASICA Statements, Commands, and Functions 3-85

INSTR Function

FORMAT:
INSTR([1,]X$,Y$)
PURPOSE:

Searches for the first occurrence of string Y$ in X$ and returns the
position at which the match is found.

REMARKS:

I is an optional offset in the range 1 to 255. X$ and Y$ are string vari-
ables, string expressions, or string literals.

Optional offset I sets the position where the search starts. INSTR re-
turns 0 if I is less than LEN($), X$ is null, or if Y$ cannot be found. If
Y$ is null, INSTR returns I or 1. If you set I equal to 0, VBASICA
returns the “Illegal function call in <line > " error message.

EXAMPLE:

10 X$ = "ABCDEB"

20 Y$ = "B'Il

30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN

218

Ok

3-86 VBASICA

INT Function

FORMAT:
INT(X)
PURPOSE:

Returns the largest integer less than or equal to X.

See also the FIX and CINT functions. Both also return integer values.
EXAMPLES:
PRINT INT(99.89)
99
Ok

PRINT INT(-12.11)
-13
ok

VBASICA Statements, Commands, and Functions 3-87

IOCTL Statement
FORMAT:
IOCTL [#] < filenumber > , < string >
PURPOSE:
Transmits a control character or string to a device driver.
REMARKS:
IOCTL commands are usually two to three characters followed option-
ally by an alphanumeric argument. An IOCTL$ command string can

be up to 255 bytes long.

The IOCTL statement works only if the following occur:
1. The device driver is installed.

2. The device driver states it processes IOCTL strings.

3. VBASICA performs an OPEN on a file on that device.

Most standard DOS device drivers don’t process IOCTL strings. You
must determine whether the specific driver can handle the command.

EXAMPLE:

If you want to set the page length to 66 lines per page on LPT1, follow
this procedure:

10 OPEN "\DEVALPT1" FOR OUTPUT AS #1
20 IOCLT$ #1, "PL66"

Also see the IOCTLS$ function.

3-88 VBASICA

IOCTLS$ Function
FORMAT:
I0CTLS$ ([#] < filenumber >)
PURPOSE:
Receives a control data string from a device driver.
REMARKS:

The IOCTLS function receives acknowledgment that an IOCTL state-
ment succeeded or failed, or obtains current status information.

IOCTLS can ask a communications device to return the current baud
rate, information on the last error, and logical line width.

The IOCTLS$ function works only if the following occur:
1. The device driver is installed.

2. The device driver states that it processes IOCTL strings.
3. VBASICA performs an OPEN on a file on that device.

EXAMPLE:
This example tells the device that the data is raw:

10 OPEN "\DEVAFOO" AS #l1
20 TOCTL #1, "RAW"

In this continuation. if the Character Driver FOO responds “false”
from the raw data mode IOCTL statement, then the file is closed:

30 IF IOCTL$(1l) = "O" THEN CLOSE 1

Also see the IOCTL statement.

VBASICA Statements, Commands, and Functions 3-89

KEY Statement

FORMAT:

KEY < key number >, < string expression >
KEY LIST

KEY ON

KEY OFF

PURPOSE:
The KEY statement allows function keys to be designated as soft keys.
Any one or all of the special function keys can be assigned a 15-byte

string, which is input to VBASICA when the key is pressed.

Initially, the soft keys are assigned the following values:

Fl = 1I8T F2 = RUN

F3 = LOAD” F4 = SAVE"”

ES = CONT(cr) F6 = PP er)

F7 = TRON(er) E8 = TTROFFfcr)

F9 = KEY F10 = SCREEN 0,0,0(cr)
REMARKS:

< key number > is the key number, an expression returning an
unsigned integer in the range 1 to 10.

<string expression > is the key assignment text, any valid string
expression up to 15 characters in length.

KEY ON The initial setting displays the key values on the 25th
line. Displays only the first 6 characters of each value.
A carriage return in the string is indicated by <.

KEY OFF Erases the soft key display from the 25th line.

3-90 VBASICA

KEY LIST Lists all ten soft key values on the screen. Displays all
15 characters of each value.

CTRL-T Displays next set of function keys, and toggles the
display off and on.

In addition to defining soft keys (F1-F10), you can trap any shifted or
unshifted key by defining it with the statement:

KEY n, CHR$ (< shift state >) + CHRS$ (<scan code>)
where n is from 15 to 20.

< shift state > is a value that corresponds to the hex value for the
current shift keys. Shift state values must be in hexadecimal.

Caps Lock &H40
Num Lock &H20

ALT &HO8
CTRL &HO4
Shift- &HO1, &HO2; &HOY

You can use combinations of shift states; for example, CHR$(&HOC)
represents CTRL-ALT together.

< scan code > is a value from 1 to 83 that represents the key to be
trapped. It is the number of the key on the keyboard, not the ASCII
value generated by pressing the key. See Appendix E.

RULES:

1. If the value returned for <key number> is not from 1 to 10,
VBASICA displays the “lllegal function call” error. VBASICA
retains the previous key string assignment.

2. The key assignment string can be 1 to 15 characters in length. If the
string is longer, VBASICA assigns the first 15 characters.

3. Assigning a null string (string of length zero) to a soft key disables
the function key as a soft key.

VBASICA Statements, Commands, and Functions 3-91

4. When a soft key is assigned, the INKEY$ function returns one char-
acter of the soft key string per invocation. If VBASICA disables a
soft key, it returns the code given for that key (see Appendix E).

5. The four cursor movement keys (up, left, down, and right) are
predefined as function keys 11, 12, 13, and 14, respectively. There-
fore, trapping scan codes 72, 75, 77 and 80 serve no useful purpose
(they are already trappables).

EXAMPLE:
50 KEY ON

Displays the soft keys on the 25th line.
200 KEY OFF

Erases soft key display.
10 KEY 1,"MENU"+CHR$(13)

Assigns the string ‘"MENU’(cr) to soft key 1. Such assignments can be
used for rapid data entry. This example might be used in a program to
select a menu display.

20 KEY Ly
Erases soft key 1.
The following routine initializes the first five soft keys:

10 KEY OFF 'Turn off key display during init
20 DATA KEY1, KEY2, KEY3, KEY4, KEY5

30 FOR I=1 TO 5

40 READ SOFTKEYS$(I)

50 KEY I,SOFTKEYS$(I)

60 NEXT I

70 KEY ON 'now display new softkeys.

3-92 VBASICA

KEY(n) Statement

FORMAT:

KEY(<n>) ON
KEY(<n>) OFF
KEY(<n>) STOP

PURPOSE:

Activates and deactivates trapping of the specified key.

REMARKS:

< n> is a numeric expression returning a value between 1 and 20
and indicates the key to be trapped.

1-10
11

12

13

14
15-20

Function keys 1 to 10
Up arrow

Left arrow

Right arrow

Down arrow

Keys defined by the form:

KEY(n),CHR$(KBflag) + CHR(scan code)

Keys 15-20 can be trapped in VBASICA 2.0 and later
releases.

VBASICA must execute a KEY(<n>) ON statement to activate
trapping of function key or cursor control key activity. After
KEY(<n>) ON, if you specify a nonzero line number in the ON
KEY(< n>) statement, every time VBASICA starts a new statement
it checks if the specified key was pressed. If so, it performs a GOSUB
to the line number specified in the ON KEY(< n >) statement.

If KEY(<n>) is OFF, no trapping takes place and the event is not
remembered even if it does take place.

VBASICA Statements, Commands, and Functions 3-93

If a KEY(<n>) STOP statement is executed, no trapping takes
place. But if the specified key is pressed, this event is remembered, and
an immediate trap takes place when KEY(<n>) ON is executed.

KEY(<n>) ON has no effect on the display of the soft key values on
the 25th line.

< n> cannot be an expression.

KILL Command

FORMAT:

KILL < filespec >
PURPOSE:
Deletes a file from disk.
REMARKS:

< filespec > is a string expression for the file specification. In versions
of VBASICA 2.0 and later, it can contain a path.

A “File already open” error occurs if you try to KILL a currently
OPENed file.

You can use KILL with all disk file types: program files, random data
files, and sequential data files.

EXAMPLE:

200 KILL "DATA 1"

3-94 VBASICA

LEFTS$ Function

FORMAT:
LEFT$(X$,1)
PURPOSE:

Returns a string consisting of the leftmost I characters of X$. I must be
from 0 to 255. If I is greater than LEN(X$), VBASICA returns all of

X$. If 1 is zero, VBASICA returns the null string (length zero).
EXAMPLE:
10 A$ = "BASIC PROGRAM"
20 B$ = LEFT$(A$.5)
30 PRINT B$
BASIC
0Ok

VBASICA Statements, Commands, and Functions 3-95

LEN Function

FORMAT:
LEN(X$)
PURPOSE:

Returns the number of characters in X$. Counts nonprinting charac-
ters and blanks.

EXAMPLE:

10 X$ = "PORTLAND, OREGON"
20 PRINT LEN(X$)

16
0k

LET Statement

FORMAT:
[LET] <var> = < expr>
PURPOSE:
Assigns the value of an expression to a variable.
REMARKS:

The word LET is optional. The equal sign suffices when assigning an
expression to a variable name.

3-96 VBASICA

—

The following program fragment contains several LET statements:

110 LET D=12

120 LET E=12"2
130 LET F=12%4
140 LET SUM=D+E+F

The same statements can also be written as the following:

110 D=12

120 E=12"2
130 F=12"4
140 SUM=D+E+F

LINE Statement

FORMAT:
LINE [[(<x>,<y>)] -(<x1>,<y1>) [L[< color >][,B[FI][,style]]

PURPOSE:

Draws or removes straight lines, rectangles, and filled rectangles for
graphics only.

REMARKS:

N = y>, <xl1>, and <yl> are valid coordinates, as
described in Chapter 1.1.

VBASICA Statements, Commands, and Functions 3-97

< color > is an expression returning a value 0 to 3, determining the
color of a line. A color of 0 draws a line in the background color. See
Chapter 1.1 for more information.

<style> is a 16-bit integer mask to put points on the screen. The
stvle option is for normal lines and boxes, but cannot be used with
filled boxes (BF). Using style with BF results in a syntax error. This
technique is called line styling, for VBASICA 2.0 and later.

LINE (x.y)-(x1,y1) draws a line from point (x,y) to point (x1,y1).

LINE -(x1,y1) draws a line from the previous graphics cursor position
to the point (x1,y1).

LINE (x1,y1)-(x2.y2).B draws a rectangle with (x1,yl) as one corner
and (x2,y2) as the opposite diagonal corner.

Using the B argument replaces the following four LINE commands:
LINE (xl,.yl)-(x2.¥1)
LINE (x1,yl)-(x1,y2)
LINE (x2,yl)-(x2,y2)
LINE (x1,y2)-(x2,y2)

BF draws the same rectangle as ,B but also fills in the interior points
with the selected attribute.

LINE (x,y)<(x1,y1),BF draws a rectangle and fills the entire rectangle.
In VBASICA 2.0 and later, out-of-range coordinates are clipped.

EXAMPLE:

Draw lines continuously using random attribute:

10 CLS
20 LINE -(RND*799,RND*399),INT(RND¥*4)
30 GO TO 20

3-98 VBASICA

Draw alternating pattern—Iline on. line off:

10 FOR X = 0 TO 799
20 LINE (X,0)-(X,399),X AND 1
30 NEXT

Draw lines continuously, using random attribute, and filling the rec-
tangles:

10 CLS
20 LINE -(RND*799,RND*399),RND*2,bf
30 GO TO 20

LINE INPUT Statement

FORMAT:
LINE INPUT[;][” < prompt > ";] < str var >

PURPOSE:

Inputs an entire line (up to 254 characters) to a string variable without
using delimiters.

REMARKS:

The prompt is a string literal that appears on your screen before input
is accepted. A question mark appears only if it is part of the prompt
string. VBASICA assigns everything you type from the end of the
prompt until you press the Return key to <str var >. If VBASICA
encounters a linefeed/carriage return sequence (in this order only) it
echoes both characters. However, VBASICA ignores the carriage
return, puts the linefeed into < str var >, and data input continues.

If LINE INPUT is followed by a semicolon, then the next print or
input statement is put on the same line, even if you press Return.

VBASICA Statements, Commands, and Functions 3-99

A LINE INPUT is bypassed if you type CTRL-C. VBASICA returns to
command level and the “Ok™ prompt appears. Use the CONT state-
ment to resume execution at the LINE INPUT.

LINE INPUT# Statement

FORMAT:

LINE INPUT# < filenum >, < str var >
PURPOSE:
Reads all characters in a sequential file until it reaches a carriage
return. The command then skips over the carriage return/linefeed
sequence and stops. The next LINE INPUT# reads all characters up to

the next carriage return. Any linefeed/carriage return sequences
encountered are preserved.

REMARKS:

< filenum > is the number under which the file is opened.

<str var > is the variable name to which the line is to be assigned.
LINE INPUT# is useful when each line of a data file is broken into

fields, or if a VBASICA program saved in ASCII mode is being read as
data by another program.

3-100 VBASICA

EXAMPLE:

10 'OPEN 0", 1, "LIST

20 LINE INPUT "CUSTOMER INFORMATION?" ;C$

30 PRINT #1, C$%

40 CLOSE 1

50 BPEN-"IY, 1, "LIST"

60 LINE INPUT #1, C$

70 PRINT C$

80 CLOSE 1

RUN

CUSTOMER INFORMATION? LINDA JONES 234,4
MEMPHIS

LINDA JONES 234 .4 MEMPHIS

Ok

LIST Command

FORMAT:

LIST [[<line no. > [- [<line no. >1]] [, <filespec >]]
PURPOSE:
Allows a program to be listed to the screen or other devices.
REMARKS:
< line no. > is a valid line number from 0 to 65529.

< filespec > is a valid string expression returning a valid file
specification.

VBASICA Statements, Commands, and Functions 3-101

RULES:

1. If the optional parameter < filespec > is omitted, the specitfied lines
are listed to the screen.

2. Listings directed to the screen by omitting < filespec > can be
stopped at any time by pressing CTRL-C.

3. If the line range is omitted, the entire program is listed.
4. When the dash (-) is used in a line range, you have three options:

a. If only the first number is given, that line and all higher num-
bered lines are listed.

b. If only the second number is given, all lines from the beginning
of the program through the given line are listed.

¢. If both numbers are specified, the inclusive range is listed.
EXAMPLE:
LIST , "LETI:"
Lists program to the Line Printer.
LIST 10-20
Lists lines 10 through 20 to the screen.
LIST 10- ,"SCRN:"
Lists lines 10 through last to the screen.
LIST -200
Lists first through line 200 to the screen.
LIST 1000-1045, "COM1:4800,0,5,2"

Lists lines 1000 through 1045 to serial port A, setting the baud rate,
parity, data bits, and stop bits.

3-102 VBASICA

LLIST Command

FORMAT:
LLIST [{ <line number > [-[<line number >]] - <line number > }]
PURPOSE:

Lists all or part of the program currently in memory on the line
printer.

REMARKS:
LLIST assumes a 132-character-wide printer.

VBASICA always returns to command level after an LLIST is exe-
cuted. The options for LLIST are the same as for the LIST command.

EXAMPLE:

See the examples for the LIST command. With the exception of the
last one, which addresses a device, LLIST works in a similar way.

VBASICA Statements, Commands, and Functions 3-103

LOAD Command

FORMAT:
LOAD ” < filespec > " [,R]
PURPOSE:

Loads a program from the specified device into memory, and option-
ally runs it.

REMARKS:

< filespec > is a valid string expression for the file specification. In
VBASICA 2.0 and later, it can contain a path. Refer to Chapter 1.5 for
more information on file specifications.

LOAD closes all open files and deletes all variables and program lines
currently residing in memory before it loads the designated program.
However, if the “R” option is used with LOAD, the program is RUN
after it is LOADed, and all open data files are kept open. Thus, you
can use LOAD with the “R” option to chain several programs (or seg-
ments of the same program). Information may be passed between the
programs using their disk data files.

EXAMPLE:

This statement allows you to enter programs from the communica-
tions ports:

LOAD "COM1:4800,0,7,1",R

3-104 VBASICA

LOC Function

FORMAT:
LOC(< file number >)

PURPOSE:

With random disk files, LOC returns the actual record number within
the file.

With sequential files, LOC returns the current byte position in the file,
divided by 128.

REMARKS:
< file number > is the number under which the file was opened.

When a file is opened for APPEND or OUTPUT, LOC returns the size
of the file in (bytes/128).

For a communications file, LOC(X) determines if any characters are in
the input queue waiting to be read. If more than 255 characters are in
the queue, LOC(X) returns 255. Because strings are limited to 255
characters, this practical limit alleviates the need to test for string size
before reading data into it.

If fewer than 255 characters remain in the queue, the value returned
by LOC(X) depends on whether the device was opened in ASCII or
binary mode. In either mode, LOC returns the number of characters
that can be read from the device. However. in ASCII mode, the low
level routines stop queueing characters as soon as end-of-file is
received. The end-of-file itself is not queued and cannot be read. An
attempt to read the end-of-file results in an “Input past end” error.

VBASICA Statements, Commands, and Functions 3-105

EXAMPLE:

200 IF LOC(1)>50 THEN STOP

LOCATE Statement

FORMAT:

LOCATE [<row>] [, [<col>] [, [<cursor>] [,[<start>]
[, <stop>1] 1]

PURPOSE:

Moves the cursor to the specified position on the active screen.
Optional parameters turn the cursor on and off and define the start
and stop scan lines for the cursor.

REMARKS:

< row > is the screen line number, a numeric expression returning an
unsigned integer in the range 1 to 25.

< col > is the screen column number, a numeric expression returning
an unsigned integer in the range 1 to 40 or 1 to 80, depending on the
screen width.

< cursor > 1s a Boolean value indicating whether the cursor is visible,
with O for off, nonzero for on.

< start > is the cursor starting scan line, a numeric expression return-
ing an unsigned integer from 0 to 31.

< stop > is the cursor stop scan line, a numeric expression returning
an unsigned integer from 0 to 31.

3-106 VBASICA

The LOCATE statement moves the cursor to the specified position.
Subsequent PRINT statements begin placing characters at this loca-
tion. Optionally it can be used to turn the cursor on or off or to change
the size of the cursor.

Any values entered outside these ranges result in the “Illegal function
call” error. VBASICA retains previous values. You can omit any of the
parameters. Omitted parameters assume the previous value.

If the start scan line parameter is given and the stop scan line parame-
ter is omitted, stop assumes the start value. If both are omitted, the
start and stop scan lines retain their previous values.
EXAMPLE:
Move to the home position in the upper left corner:

10 EogATE 1.1

Make the tursor visible;the position remains unchanged:

20 LOCATE ,,1

The cursor position and visibility remain unchanged. Set the cursor to
display at the bottom of the character starting and ending on scan line
15:

30 LOCATE ., ,1B

Move to line 5, column 1, turn cursor on; cursor covers entire charac-
ter cell starting at scan line 0 and ending on scan line 9:

40 LOCATE B,1,1.0,9
NOTE: Usually, VBASICA does not print to line 25. To put things on

line 25. turn off the soft key display using KEY OFF, then use
LOCATE 25,1 PRINT ..

VBASICA Statements, Commands, and Functions 32107

LOF Function

FORMAT:
LOF(< file number >)
PURPOSE:
Returns the number of bytes allocated to the file.
REMARKS:

< file number > is associated with a currently open file. For diskette
files, LOF returns a multiple of 128. For example, if the actual file
length is 257 bytes, the number 384 is returned.

For communications, LOF returns the amount of free space in the
input buffer. That is, size-LOC(filnum), where size is the size of the
communications buffer, defaults to 256 but can be changed with the
/C: option at VBASICA initialization time.

EXAMPLE:

10 OPEN "DATA.FIL" AS #1
20 GET #1, LOF(1)/128

These statements get the last record of the file, assuming the record
length is 128 bytes.

10 OPEN "FILE.BIG" AS #1
20 GET #1, LOF(1)/128

These statements get the last record of the file FILE.BIG, assuming
that the file was created with a default record length of 128 bytes.

3-108 VBASICA

LOG Function

FORMAT:
LOG(X)
PURPOSE:
Returns the natural logarithm of X. X must be greater than zero.

EXAMPLE:

PRINT LOG(45/7)
1.860752
0k

LPOS Function

FORMAT:
LPOS(X)
PURPOSE:
Returns the current position of the printhead within the line printer
buffer. LPOS(X) does not necessarily give the physical position of the
printhead.
REMARKS:
X i1s a dummy argument.

EXAMPLE:

100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

VBASICA Statements, Commands, and Functions 3-109

LPRINT and LPRINT USING Statements

FORMAT:

LPRINT [<expr list>]
LPRINT USING < string expr>; <expr list>

PURPOSE:
Prints data at the line printer.
REMARKS:

Same as PRINT and PRINT USING, except output goes to the line
printer.

LPRINT assumes a 132-character-wide printer.

3-110 VBASICA

LSET and RSET Statements

FORMAT:
LSET <str var> = <str expr>
RSET < str var> = <str expr>
PURPOSE:

Moves data from memory to a random file buffer, in preparation for a
PUT statement.

REMARKS:

If <str expr> needs fewer bytes than were allocated to the field con-
taining <str var>, LSET left-justifies the string in the field, and
RSET right-justifies the string. Spaces are used to pad the extra posi-
tions. If the string is too long for the field, characters are dropped from
the right.

Numeric values must be converted to strings before they are LSET or
RSET. See the MKI$, MKS$, and MKDS$ functions.

EXAMPLE:

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)

LSET or RSET can also be used with a nonfielded string variable to
left-justify or right-justify a string in a given field. For example, the
program lines:

110 A$=SPACE$(20)
120 RSET A$=N$

right-justify the string N$ in a 20-character field. This is valuable when
you are formatting printed output.

VBASICA Statements, Commands, and Functions 3111

MERGE Command

FORMAT:
MERGE < filespec >
PURPOSE:

Merges the lines from an ASCII program file into the program
currently in memory.

REMARKS:

< filespec > 1is a string expression that returns a valid file specification.
In VBASICA 2.0 and later releases, it can contain a path. Refer to
Chapter 1.5 for more information on file specifications.

EXAMPLE:

MERGE "COM2:4800,0,7,1"

3-112 VBASICA

MID$ Function and Statement

FORMAT:

MID$(< str expri > ,n[,m]) = <str expr2 >
PURPOSE:
Replaces a portion of one string with another string.
REMARKS:
n and m are integer expressions.
<strexprl > and <strexpr2 > are string expressions.
Beginning at position n, the characters in <str exprl > are replaced
by the characters in <str expr2>. The m option can be used to
specify the number of characters from <Ustr expr2 > in the replace-
ment. If m is omitted, all of <str expr2 > is used. However, the
number of characters replaced can never exceed the original length of
< strexrprl >,
EXAMPLE:

10 A$="DIDDY WAH WAH"

20 MID$(A$%,11)="DIDDY"

30 PRINT A$

RUN

DIDDY WAH DIDDY

MIDS$ can also return a substring of a given string.

VBASICA Statements, Commands, and Functions 3-113

MKDIR Command

FORMAT:
MKDIR < pathname >
PURPOSE:
Creates a new directory.
REMARKS:
< pathname > is a string expression specifying the name of the direc-
tory to be created. MKDIR works exactly like the DOS command

MKDIR. The < pathname > must be a string of less than 63 charac-
ters.

EXAMPLE:

Assume the current directory is the root. This example creates a sub-
directory named SALES in the current directory of the current drive:

MKDIR "SALES"

The following example creates a subdirectory named USERS in the
current directory of drive B:

MKDIR "B:USERS"

Also see the CHDIR and RMDIR statements.

3-114 VBASICA

MKIS$, MKS$, and MKD$ Functions
and Statements

FORMAT:
MKI$({ <int expr>)
MKS$(< single-precision expr >)
MKD$(< double-precision expr>)

PURPOSE:

Converts numeric values to string values. Any numeric value put into
a random file buffer using an LSET or RSET statement must be con-
verted to a string. MKI$ converts:

B An integer to a 2-byte string
P A single-precision number to a 4-byte string

» A double-precision number to an 8-byte string
EXAMPLE:

90 AMT=(K+T)
100 FIELD #1,8 AS D$,20 AS N$

110 LSET D$ = MKS$(AMT)
120 LSET N$ = A$
130 PUT #1

VBASICA Statements, Commands, and Functions 3-115

NAME Command

FORMAT:
NAME ” < old filename > " AS ” <new filename > "~
PURPOSE:
Changes the name of a disk file.
REMARKS:
< old filename > must exist and < new filename > must not exist;
otherwise an error results. The renamed file occupies the same area of
disk space as it did under the old name.

EXAMPLE:

In the following example, the file formerly named ACCTS is renamed
LEDGER:

0Ok
NAME "ACCTS" AS "LEDGER"
Ok

3-116 VBASICA

NEW Command

FORMAT:
NEW
PURPOSE:
Deletes the program in memory and clears all variables.
REMARKS:
Enter NEW at command level to clear memory before enterir-lg a new

program. VBASICA always returns to command level after executing a
NEW command.

OCTS$ Function

FORMAT:
OCT$(X)
PURPOSE;

Returns a string that represents the octal value of the decimal argu-
ment. X is rounded to an integer before OCT$(X) is evaluated.

Use the HEX$ function for hexadecimal conversion.
EXAMPLE:

PRINT OCT$(24)
30
Ok

VBASICA Statements, Commands, and Functions 3-117

ON COM Statement

FORMAT:
ON COM(<n>) GOSUB < line number >

PURPOSE:

Sets up a line number for VBASICA to trap when information is com-
ing into the communications buffer.

REMARKS:

< n> 1is the number of the communications port, where | is port A
and 2 is port B.

< line number > is the starting line number of the routine to handle
the information coming from the port. A line number of 0000 (zero)
disables trapping of communication for the specified port.

You must execute a COM(< n >) ON statement to activate this state-
ment for port <n>. After COM(<n>) ON, if you specify a
nonzero line number in the ON COM(< n >) statement, every time
VBASICA starts a new statement it checks to see if any characters have
come through the specified port. If so, it performs a GOSUB to the
specified line number.

If you execute COM(< n >) OFF, no trapping occurs for the port and
the event is not remembered even if it does take place.

If you execute a COM(< n >) STOP statement, no trapping can occur
for the port and the event is not remembered even if it does take place.

If you execute a COM(< n >) STOP statement, no trapping can occur

for the port. But if VBASICA receives a character, it is remembered
and an immediate trap occurs when you execute COM(<n >) ON.

3-118 VBASICA

—

When the trap occurs, VBASICA creates an automatic COM(<n>)
STOP. Consequently, recursive traps can never occur. The RETURN
from the trap routine automatically does a COM(<n>) ON unless
an explicit COM(< n >) OFF was performed inside the trap routine.

Event trapping does not occur when VBASICA is not executing a pro-
gram. When an error trap (resulting from an ON ERROR statement)
occurs, all trapping is automatically disabled (including ERROR,
COM. and KEY).

Before returning to the main program, the communications trap rou-
tine typically reads an entire message from the communications port.
At high baud rates, the overhead of trapping and reading for each char-
acter can overflow the communications buffer. Therefore, avoid using
the communications trap for single-character messages.
See the RETURN statement for more information.
EXAMPLE:

100 'PORT, A = 1

L1@: PORT . B = &
120 ON COM(PORT. A) GOSUB 500

BEDt* ks ROUTINE TO HANDLE PORT A CHRS

550 RETURN

VBASICA Statemenis, Commands, and Functions 3-119

ON ERROR GOTO Statement

FORMAT:
ON ERROR GOTO <line >

PURPOSE:

Enables error trapping and specifies the first line of the error-handling
subroutine.

REMARKS:

<line > is the number of the first line of an error-handling subrou-
tine.

After error trapping is enabled, all errors detected—including direct
mode errors (for example, syntax errors)—cause VBASICA to jump to
the specified error-handling subroutine. If <line > does not exist, an
“Undefined line” error results.

To disable error trapping, execute an ON ERROR GOTO statement.
Subsequent errors print an error message and halt execution. An ON
ERROR GOTO in an error-trapping subroutine tells VBASICA to
stop and print the error message for the error that caused the trap. All
error-trapping subroutines should execute an ON ERROR GOTO if
they encounter an error for which no recovery action exists.

If an error occurs while an error-handling subroutine is executing, the
VBASICA error message is printed and execution stops. Error trapping
does not occur within the error-handling subroutine.

EXAMPLE:

ERROR
10 ON ERROR GOTO 1000

3-120 VBASICA

ON...GOSUB and ON...GOTO Statements

FORMAT:

ON <expr> GOTO <list>
ON <expr> GOSUB <list>

PURPOSE:

Branches to one of several specified line numbers, depending on the

value returned when < expr > is evaluated.
REMARKS:

< expr > Is a numeric expression.
< list > is a list of line numbers.

The value of <expr> determines which line number in the list is
used for branching. If the value is three, the third line number in the
list is the destination of the branch. If the value is noninteger, the frac-
tional portion is rounded.

In the ON...GOSUB statement, each line number in the list must be
the first line number of a subroutine. If the value of <expr> is zero,
or greater than the number of items in the list (but less than or equal
to 255), VBASICA continues with the next executable statement. If the
value of < expr>> is negative or greater than 255, an “Illegal function
call” error occurs.

EXAMPLE:

100 ON L-1 GOTO 150, 300,320,390

VBASICA Statements, Commands, and Functions 3-121

ON KEY(n) Statement

FORMAT:
ON KEY(<n>) GOSUB < line number >
PURPOSE:

Sets up a line number for VBASICA to trap when vou press the
specified function key or cursor control key.

REMARKS:

<n> is a numeric expression returning a value between 1 and 20
and indicates the key to be trapped:

1-10 Function keys 1 to 10
11 Up arrow

12 Left arrow

13 Right arrow

14 Down arrow

15-20 Keys defined by the form:
KEY (n),CHR$(KBflag) + CHRS (scan code)

Keys 15-20 can be trapped only in VBASICA 2.0 and
later releases. See the KEY (n) statement for more infor-
mation.

<line number> is a valid number from 0 to 65529. If < line
number > is 0, VBASICA disables trapping on the specified key.

Execute a KEY(< n >) ON statement to activate trapping of function
key or cursor control key activity. After KEY(<n>) ON, if you
specify a nonzero line number in the ON KEY(<n>) statement,
every time VBASICA starts a new statement it checks if the specified
key was pressed. If the key was pressed, VBASICA performs a GOSUB
to the line number specified in the ON KEY(< n >) statement.

3-122 VBASICA

A_

If you execute a KEY(< n >) OFF statement, no trapping occurs for the
specified key and the event is not remembered even if it does occur.

If you execute a KEY(<n>) STOP statement, no trapping occurs.
However, if the specified key is pressed, VBASICA remembers this
event. Consequently, an immediate trap occurs when you execute a
KEY{(<n>) ON.

When the trap occurs, VBASICA executes an automatic KEY(<n>)
STOP. Thus, recursive traps can never take place. The RETURN from
the trap routine automatically performs a KEY(<n>) ON unless an
explicit KEY(< n >) OFF was performed inside the trap routine.

Event trapping does not occur when VBASICA is not executing a pro-
gram. When an error trap (resulting from an ON ERROR statement)
occurs, VBASICA automatically disables all trapping (including
ERROR, COM, and KEY).

Key trapping may not work when you press other keys before the
specified key. The key that caused the trap cannot be tested using
INPUTS or INKEY$. Therefore, the trap routine for each key must be
different if you desire a different function.

KEY(<n>) ON has no effect on whether the soft key values are
displayed on the 25th line.

See the RETURN statement for more information.

EXAMPLE:

100 KEY.5 = 5
110 ON KEY(KEY.5) GOSUB 500

108 ROUTINE TO HANDLE KEY(5)
550 RETURN

VBASICA Statements, Commands, and Functions 3-123

ON PLAY Statement

FORMAT:

ON PLAY (n) GOSUB < linenumber >
PURPOSE:
Branches to a specified subroutine when the music queue contains
fewer than (n) notes. This statement permits continuous music during
program execution.

REMARKS:

(n) is an integer expression from 1 through 32. Values outside this
range result in an “Illegal function call” error.

< linenumber > is the statement line number of the PLAY event trap
subroutine.

PLAY ON causes an event trap when the background music queue
goes from (n) notes to (n — 1) notes.

(n) must be an integer between | and 255,
PLAY ON enables PLAY event trapping.
PLAY OFF disables PLAY event trapping.
PLAY STOP suspends PLAY event trapping.

If you execute a PLAY OFF statement, VBASICA does not perform or
remember the GOSUB.

If you execute a PLAY STOP statement, VBASICA does not perform
the GOSUB until it executes a PLAY ON statement.

3-124 VBASICA

When an event trap occurs (that is, the GOSUB is performed),
VBASICA executes an automatic PLAY STOP so that recursive traps
cannot occur. The RETURN from the trapping subroutine automati-
cally performs a PLAY ON statement unless an explicit PLAY OFF
occurred inside the subroutine.

You can use the RETURN < line number > form of the RETURN
statement to return to a specific line number from the trapping subrou-
tine. Use this type of return with care because any other GOSUBs,
WHILEs, or FORs active at the time of the trap remain active, and
errors such as “FOR without NEXT"” might result.

RULES:

1. A PLAY event trap is issued only when playing background music
(for example, PLAY “MB..). PLAY event traps are not issued when
running in Music Foreground (for example, default case, or PLAY
ENMEL)

2. A PLAY event trap is not issued if the background music queue has
already gone from having (n) to (n — 1) notes when a PLAY ON is
executed.

3. If (n) is a large number, event traps occur frequently enough to
diminish program execution speed.

Also see the PLAY ON, PLAY OFF, and PLAY STOP statements.

VBASICA Statements, Commands, and Functions 3-125

EXAMPLE:

In the following example, control branches to a subroutine when the
background music buffer decreases to 7 notes.

100 PLAY ON

540 PLAY "MB L1 XZITHER$"
550 ON PLAY(8) GOSUB 6000

6000 REM, **BACKGROUND MUSIC**
6010 LET COUNT% = COUNT% + 1

6999 RETURN

ON TIMER Statement

FORMAT:
ON TIMER (n) GOSUB < line number >

PURPOSE:

Provides an event trap during real time.

REMARKS:

ON TIMER causes an event trap every (n) seconds. (n) must be a

numeric expression from 1 to 86400 (1 second to 24 hours). Values
outside this range generate an “Illegal function call” error.

3-126 VBASICA

—_—

The ON TIMER statement is executed only if a TIMER ON statement
is executed to enable event trapping. If event trapping is enabled and
the <line number> in the ON TIMER statement is not zero,
VBASICA checks between statements to see if the time has been
reached. If it has, a GOSUB is performed to the specified line.

If a TIMER OFF statement has been executed, the GOSUB is not per-
formed and is not remembered.

If a TIMER STOP statement has been executed, the GOSUB is not
performed, but will be performed as soon as a TIMER ON statement
is executed.

When an event trap occurs (that is, the GOSUB is performed), an
automatic TIMER STOP is executed so that recursive traps cannot
occur. The RETURN from the trapping subroutine automatically per-
forms a TIMER ON statement unless an explicit TIMER OFF was
performed inside the subroutine.

You can use the RETURN < line number > form of the RETURN
statement to return to a specific line number from the trapping subrou-
tine. Use this type of return with care because any other GOSUBs,
WHILEs. or FORs active at the time of the trap remain active, and
errors such as “FOR without NEXT” can result.

EXAMPLE:

The following example displays the time of day on line 1 every minute.

10 ON TIMER(60) GOSUB 10000
20 TIMER ON

10000 LET OLDROW=CSRLIN 'Save current Row
10010 LET OLDCOL=POS(0)'Save current Column
10020 LOCATE 1,1:PRINT TIMESS$;

10030 LOCATE OLDROW,OLDCOL 'Restore Row & Col
10040 RETURN

VBASICA Statements, Commands, and Functions 3-127

Also see the TIMER ON, TIMER OFF, and TIMER STOP state-
ments.

OPEN Statement

FORMAT:

OPEN [<dev>] <filespec > [FOR <mode >] AS [#]
< file number> [LEN= <Irecl >]

PURPOSE:

Establishes addressability between a physical device and an I/O buffer
in the data pool.

REMARKS:
< dev > is an optional part of the filename string.

< filespec > is a valid string expression for the file specification. In
VBASICA 2.0 and later versions, it can contain a path. Refer to
Chapter 1.5 for more information. In the simplest case, it is a filename.
The device may be specified separately in the < dev > field or as part
of the <filespec >, or omitted entirely, in which case the default drive
is assumed.

3-128 VBASICA

< mode > determines the initial positioning within the file and the
action to be taken if the file does not exist. The valid modes and
actions taken are the following:

INPUT Position to the beginning of an existing file. The “File
Not Found” error is given if the file does not exist.

OUTPUT Position to the beginning of the file. If the file does not
exist, one is created.

APPEND Position to the end of the file. If the file does not exist,
one is created.

If you omit the FOR < mode > clause, the initial position 1s at the
beginning of the file. If VBASICA does not find the file, it creates one
in the Random 1/O mode. Records can be read or written randomly at
any position within the file.

< file number > is an integer expression returning a number from 1
through 255. Use this number to associate an I/O buffer with a disk file
or device. This association exists until you execute a CLOSE < file
number > or CLOSE statement.

NOTE: At any time, you can have a particular file open under more
than one file number. Therefore, you can use different modes for
different purposes. Or, for program clarity, you can use different file
numbers for different modes of access. Each file number has a different
buffer, so you can keep several records from the same file in memory
for quick access. However, you cannot open a file for sequential output
or append if the file is already open.

< lrecl > is an integer expression from 2 to 32768. This value sets the

record length used for random files; see the FIELD statement. If omit-
ted, the record length defaults to 128-byte records.

VBASICA Statements, Commands, and Functions 3-129

When you OPEN FOR APPEND a disk file, the position is initially at
the end of the file and the record number is set to the last record of the
file. Then GET#(<lrecl >), LOF(<lrecl >), PRINT, WRITE, or
PUT extend the file. The program can position elsewhere in the file
with a GET statement. If this procedure is done, the mode is changed
to random and the position moves to the record indicated.

After VBASICA moves the position from the end of the file, you can
append records to the file by executing a GET #x,LOF(x)/ < Irecl > .

OPEN COM Statement

FORMAT:

OPEN < COM.specification > AS [#] < file number >
PURPOSE:
Allocates a buffer for I/O as OPEN for disk files.
REMARKS:

< COM . specification > is:

" <dev>:<speed >, <parity >, < data>, <stop > [,RS]
[.CS <n >][.DS < n >][.CD < n > J[.LF][,PE][,ASC or ,BIN]”

<dev> is a valid communications device. Valid devices are COM:
(port A) and COM2: (port B).

3-130 VBASICA

<speed > is a literal integer specifying the transmit/receive baud rate.
Valid speeds are the following:

50, 75, 110, 150, 200, 300, 600, 1200, 1800, 2000, 2400, 3600,
4800, 9600, 19200

< parity > is a one-character literal specifying the parity for transmit
and receive as follows:

S SPACE Parity bit always transmitted and received as
space (0 bit).

8] ODD Odd transmit/receive parity checking.

M MARK Parity bit always transmitted and received as
mark (1 bit).

E EVEN Even transmit/receive parity checking.

N NONE No transmit parity, no receive parity checking.

< data > is a literal integer indicating the number of transmit/receive
data bits. The following are valid values:

5,657, 8

NOTE: 5 data bits with no parity is illegal. 8 data bits with any parity
is illegal.

<stop > is a literal integer indicating the number of stop bits. The
following are valid values: :

152

VBASICA Statements, Commands, and Functions 3-131

If omitted, then 75 and 110 bps transmit two stop bits; all others
transmit one stop bit.

[RS] suppresses RTS (Request to Send).

[CS <n >] controls CTS (Clear to Send).
[DS < n >] controls DSR (Data Set Ready).
[CD < n >] controls CD (Carrier Detect).

[LF] sends a line feed character after each carriage return, including
the carriage return sent as a result of the width setting. LF allows com-
munications files to be printed on a serial line printer. Note that
INPUT# and LINE INPUT# stop when they encounter a carriage
return, ignoring the line feed, when used to read from a communica-
tions file opened with the LF option.

[PE] enables parity checking. The default is no parity checking. The
PE option causes a device I/O error on parity errors and turns on the
high order)bit)for 7)0r less databits.(The) PE) option does not affect
framing and overrun errors. These errors always turn on the high order
bit and cause a device 1/O error.

< file number > is an integer expression returning a valid file number.
The number is associated with the file for as long as it is OPEN and
refers other COM [/O statements to the file.

DEFAULTS: Missing parameters invoke the following defaults: speed
= 300 bps, parity = EVEN, bits = 7.

NOTE: You can OPEN a COM device to only one file number at a
time.

3-132 VBASICA

POSSIBLE ERRORS:

Any coding errors within the filename string result in the “Bad File
Name” error. VBASICA gives no indication of the parameter in error.

The “Device Timeout™ error occurs if VBASICA does not detect data
set ready (DSR). Refer to hardware documentation or the DOS 2.1
Reference for proper cabling instructions.

EXAMPLE:

VBASICA opens file 1 for communication with default values. Speed
at 300 bps. even parity, 7 data bits, and 1 stop bit:

10 OPEN "COM1l: " AS 1

VBASICA opens file 2 for communication at 2400 bps. Parity and
number of data bits are the default values:

20 OPEN "COM1:2400 " AS #2
VBASICA opens file number 1 for Asynchronous I/O at 1200 bits/
second, with no parity produced or checked, and sends and receives 8-
bit bytes:

10 OPEN "COM1:1200,N,8" AS #l1

VBASICA Statements, Commands, and Functions 3-133

OPTION BASE Statement

FORMAT:
OPTION BASE n
PURPOSE:
Declares the minimum value for array subscripts.
REMARKS:
nis 1 or 0.
The default base is 0.
EXAMPLE:

If the following statement is executed, the lowest value an array sub-
script can have is 1:

OPTION BASE 1

3-134 VBASICA

OUT Statement

FORMAT:
OouT 1I,J
PURPOSE:
Sends a byte to an output port.
REMARKS:
I and J are integer expressions in the range 0 to 65535.

The integer expression I is the port number, and the integer expression
J is the data to be transmitted.

EXAMPLE:
This command:
100 OUT 12345, 255
is the same as the following (in assembly language):

MOV DX, 12345
MOV AL, 255
ouT DX,AL

VBASICA Statements, Commands, and Functions 3-135

PAINT Statement

FORMAT:

PAINT (< xstart >, < ystart >)[, < paint attribute >
[, < border attribute >]]

PURPOSE:

Fills an area on the screen with the selected color, for Graphics mode
only.

REMARKS:

< xstart > and < ystart > are valid coordinates that specify the
screen coordinates for the origin of painting.

< paint attribute > is the color VBASICA paints specified by a
number from 0 to 3. It determines which color fills the area.

< border attribute > is the color of the edges of the figure VBASICA
paints specified by a number from 0 to 3. Painting continues until
VBASICA finds this color.

The PAINT statement fills in an arbitrary graphics figure with the
specified paint color. If not specified, the paint attribute defaults to the
foreground color (3 or 1), and the border attribute defaults to the paint
attribute.

For example, you might want to fill in a circle of attribute 3 with attri-
bute 0 (a black ball with a white border).

Only two attributes exist in high-resolution mode: whiting out an area
until white is encountered, or blacking out an area until black is

encountered.

PAINT must start on a nonborder point or it has no effect.

3-136 VBASICA

PAINT can fill any figure, but PAINTing jagged edges or very complex
figures can result in the “Out of Memory” error. If you get this error,
increase the amount of stack space available with the CLEAR state-
ment.

VBASICA clips out-of-range coordinates.
EXAMPLE:

10 SCREEN 2
20 LINE (100,200)-(200,350),1,B
30 PAINT (150,225),1,1

Tiling
Tiling is available for VBASICA 2.0 and later releases. It is the design
of a PAINT pattern 8 bits wide and up to 64 bytes long. Each byte in

the tile string masks 8 bits along the x-axis when putting down points.
Construction of the tile mask works as follows. Use the syntax:

PAINT (x,y), CHRS$(n)...CHR$(n)

where (n) is a number between 0 and 255 which will be represented in
binary across the x-axis of the tile. Each CHR$(n) up to 64 generates
an image of the bit arrangement of the code for that character. For
example, the decimal number 85 is binary 01010101. The graphic
image line on a black and white screen generated by CHR$(85) is an
eight-pixel line, with even numbered pixels white, and odd pixels
black. That is, each bit containing a 1 sets the associated pixel on and
each bit filled with a O sets the associated bit off in monochrome mode.
The ASCII character CHR$(85), U, is not displayed in this case.

If the current screen mode supports only two colors, the screen can be
painted with X’s with the following statement:

PAINT (320,100),CHR$(129) + CHR$(66) + CHR$(36) + CHR$(24) +
CHR$(24) + CHR$(36) + CHR$(66 + CHR$(129)

VBASICA Statements, Commands, and Functions 3-137

This appears on the screen as:
X increases —

00 | x
0,1 X
B2 X
0,3 x| =
0,4 X | %
0,5 X
0,6 X
Q- |- %

X

CHR$(129)
CHRS$(66)
CHR$(36)
CHRS$(24)
CHRS$(24)
CHRS$(36)
CHR$(66)
CHR$(129)

Tile byte 1
Tile byte 2
Tile byte 3
Tile byte 4
Tile byte 5
Tile byte 6
Tile byte 7
Tile byte 8

When supplied, < background attribute > specifies the background
tile slice to skip when checking for boundary termination.

You cannot specify more than two consecutive bytes in the tile back-
ground slice that match the tile string. Specifying more than two

results in an “Illegal function call” error.

EXAMPLE:

10 PAINT (5,15).2.,0

begins painting at coordinates 5,15 with color 2 and border color 0,

and fills to a border.

3-138

VBASICA

PLAY Statement

FORMAT:
PLAY <string exp>
PURPOSE:
Plays music as specified by <string exp > .
REMARKS:

< string exp > 1is a string expression returning a valid string conform-
ing to the format described in Table 3-5.

PLAY implements a concept similar to DRAW by embedding a Music
Macro Language into the string data type. The following table
describes the single-character commands you can use with the PLAY
statement.

Table 3-5: PLAY Commands

COMMAND DESCRIPTION

A-G [# +,—] Plays the note. A # or + following the note indicates sharp, and —
indicates flat.

L <n> Length sets the length of each note. L4 is a quarter note, L1 isa
whole note, and so on. n ranges from 1 to 64. The length can also
follow the note when you want to change the length for only one
note. In this case, A16 is equivalent to L16A.

MF Music Foreground. Music created by PLAY or SOUND runs in the
foreground. That is, VBASICA does not execute the next program
statement until the last note, or rest, of subsequent PLAY
statements are started.

MB Music Background. Music created by SOUND or PLAY runs in the
background. That is, each note or sound is placed in a buffer,
allowing the VBASICA program to continue executing while music
plays in the background. Up to 32 notes (or rests) can be played in
the background at a time.

VBASICA Statements, Commands, and Functions 3-139

COMMAND

DESCRIPTION

MN

ML
MS

N <n>

= Zn>

< N>

0O <n>
P<nz
T <n>

X <string >

Music Normal. Each note plays 7sths of the time determined by L
(length).

Music Legato. Each note plays the full period set by L (length).

Music Staccato. Each note plays ¥%ths of the time determined by L
(length).

Play note n. n can range from 0 to 84. In the seven possible octaves,
84 notes exist. N = 0 indicates rest.

Go to the next higher octave and play note n, for VBASICA 2.0 and
later. Each time note n is played, the octave increases until it
reaches octave 6. For example, PLAY “ > A” raises the octave and
plays note A. Each time PLAY *“ > A" is executed, the octave goes
up until it reaches octave 6; then each time PLAY > A” executes,
note A plays at octave 6.

Go to the next lower n and play note n, for VBASICA 2.0 and later.
Each time note n is played, the octave decreases, until it reaches
octave 0, For example, PLAY “ < A” lowers the octave and plays
note A. Each time PLAY ** < A” executes, the octave decreases
until it reaches octave 0; then each time PLAY * < A" executes,
note A plays at octave 0.

Octave. Sets the current octave. Seven octaves (0..6) exist.
Pause. P ranges from 1 to 64.

Tempo. Sets the number of L4’s in a second. n ranges from 32 to
255. The default is 120.

Period. A dot after a note plays the note 3/2 times the period
determined by L (length) times T (tempo). Multiple dots can appear
after the note. The period is scaled accordingly (for example, A. 3/2,
A..9/4, A...27/8). Dots can appear after a pause (P) and scale the
pause length as described.

Executes substring.

NOTE: Because of the slow clock interrupt rate, some notes do not
play at higher tempos—for example, L64 at T255. Determine these
note/tempo combinations through experimentation. In all forms of the
PLAY command, the n argument can be a constant such as 12 or it
can be the name of a variable.

3-140

VBASICA

To play tied notes, concatenate the expressions of the two notes.
VBASICA plays the two notes continuously.

You can use X to store a “subtune” in one string and call it
repetitively with different tempos or octaves from another string.

EXAMPLE:

10 A$ = "BB-C"

20 B$ = "04XA$;"

30 C$ = "LICTSON3N4NSNG"
40 PLAY "P2XA$;XB$%;XC$%;"

PLAY(n) Function

FORMAT:
PLAY (n)
PURPOSE:

Returns the number of notes currently in the background music
queue.

REMARKS:
(n) is a dummy argument and can be any value.

PLAY(n) returns 0 when you are in Music Foreground mode.

VBASICA Statements, Commands, and Functions 3-141

PLAY ON, PLAY OFF, and PLAY STOP
Statements

FORMAT:

PLAY ON
PLAY OFF
PLAY STOP

PURPOSE:

PLAY ON enables PLAY event trapping, specified by the ON PLAY
statement.

PLAY OFF disables PLAY event trapping.
PLAY STOP suspends PLAY event trapping.
REMARKS:

If a PLAY OFF statement was executed, the GOSUB is not performed
and is not remembered.

If a PLAY STOP statement was executed, the GOSUB is not per-
formed, but is performed as soon as a PLAY ON statement is executed.

When an event trap occurs (that is, the GOSUB is performed),
VBASICA executes an automatic PLAY STOP so recursive traps
cannot occur. The RETURN from the trapping subroutine
automatically performs a PLAY ON statement unless an explicit
PLAY OFF was performed inside the subroutine.

You can use the RETURN < line number > form of the RETURN

statement to return to a specific line number from the trapping
subroutine.

3-142 VBASICA

NOTE: Any other GOSUBs, WHILEs, or FORs active at the time of
the trap remain active, and errors such as “FOR without NEXT” can
result.

PMAP Function

FORMAT:
PMAP < expression >, < function >
PURPOSE:

Maps world coordinate expressions to physical locations or maps
physical expressions to a world coordinate location for graphics mode.
< function > can be:

0 Maps world expression to physical x coordinate.

1 Maps world expression to physical y coordinate.

2 Maps physical expression to world x coordinate.

3 Maps physical expression to world y coordinate.

REMARKS:

The four PMAP functions allow you to find equivalent point locations
between the world coordinates created with the WINDOW statement

and the physical coordinate system of the screen or viewport as defined
by the VIEW statement.

VBASICA Statements, Commands, and Functions 3-143

EXAMPLE:
If you define a WINDOW SCREEN (80,100)-(200,200) then the upper
left coordinate of the window is (80,100) and the lower right is
(200,200). The range of the screen coordinates can be (0,0) in the
upper left corner and (639,199) in the lower right. Then,

X = PMAP(80,0)
returns the screen x coordinate of the window x coordinate 80:

0
The PMAP function in the statement:

Y = PMAP(200,1)
returns the screen y coordinate of the window y coordinate 200:

199
The PMAP function in the statement:

X = PMAP(619,2)

returns the “world” x coordinate that corresponds to the screen or
viewport x coordinate 619:

199
The PMAP function in the statement:
Y = PMAP(100,3)

returns the “world” y coordinate that corresponds to the screen or
viewport y coordinate 100:

140

3-144 VBASICA

POINT Function

FORMAT:

POINT (< xcoordinate > , < ycoordinate >)
or
POINT (< function >)

PURPOSE:

POINT (x,y) allows you to read the color number of a pixel from the
screen. If the specified point is out of range, the value — 1 is returned.
In medium-resolution graphics, valid returns are 0 through 3, and in
high-resolution, 0 through 1.

REMARKS:

< xcoordinate > and < ycoordinate > are the coordinates of the
pixel to be referenced, for Graphics mode only.

POINT with one argument allows you to retrieve the current graphics
cursor coordinates. Therefore:

a = POINT < function>

returns the value of the current x or y graphics accumulator,
depending on the value of < function >, as follows:

< function > = Action of POINT < function >

0 Returns the current physical x coordinate.
1 Returns the current physical y coordinate.

2 Returns the current logical x coordinate. If the WINDOW
statement was not used, this returns the same value as the
POINT(0) function.

VBASICA Statements, Commands, and Functions 3-145

3 Returns the current logical y coordinate if WINDOW is active, or
else returns the current physical y coordinate, as in 1.

where the physical coordinate is the coordinate on the screen or
current viewport.

EXAMPLE:

10 FOR I = 1 TO 400
20 IF POINT(I,I) <> O THEN GOTO 50 Ta.der -7

30 PSET(I,I) 'put a dot if not one here
40 GOTO 60

50 PRESET(I,I) 'remove a dot if one here
60 NEXT I

POKE Statement

FORMAT:
POKE 1,J
PURPOSE:
Writes a byte into a memory location.
REMARKS:
I and J are integer expressions.

[is the address of the memory location to be POKEd. I must be from
0 to 65536. J is the data to be POKEd. J must be from 0 to 255.

PEEK is the complementary function to POKE. The argument to
PEEK is an address from which a byte is read.

3-146 VBASICA

EXAMPLE:

10 POKE &HSA00, &HFF

POS Function

FORMAT:

POS(X)
PURPOSE:

Returns the current cursor position. The leftmost position is 1. X is a
dummy argument.

See also the LPOS function.
EXAMPLE:

IF POS(X)>60 THEN PRINT CHR$(13)

VBASICA Statements, Commands, and Functions 3-147

PRESET Statement

FORMAT:

PRESET (< absolute x >, < absolute y >) [, < attribute >]
PRESET STEP (< x offset >, <y offset>) [, < attribute >]

PURPOSE:

Removes (turns off) or displays (turns on) one pixel from the screen,

for Graphics mode only.

REMARKS:

PRESET has a syntax identical to PSET. The only difference is that if
no third parameter is given for the background color, zero is selected.
When you give a third argument, PRESET is identical to PSET.

If an out-of-range coordinate is given to PSET or PRESET, no action
is taken, nor is an error given. If an attribute greater than 3 is given,
the “Illegal function call™ error results. Attribute value 2 is treated like
0 in high resolution and 3 is treated like 1 for compatibility with

medium resolution.
VBASICA clips out-of-range coordinates.

EXAMPLE:

10 FOR I = O TO 100

20 PSET (I,I)

30 NEXT 'draw a diagonal line to (100,100)
40 FOR I = 100 TO O STEP -1

50 PRESET (I,I),0

60 NEXT 'remove the line just drawn

3-148

VBASICA

PRINT Statement

FORMAT:

PRINT [<expr list >]
PURPOSE:
Outputs data to the screen.
REMARKS:

If you omit <expr list>, VBASICA prints a blank line. If you
include <expr list >, the values of the expressions appear on the
screen. The expressions in the list can be numeric and/or string
expressions. Strings must be enclosed by quotation marks.

Print Positions

VBASICA divides each line into print zones of 14 spaces. The punc-
tuation that separates the items in the list determines the position of
each printed item. A comma prints the next value at the beginning of
the next zone. A semicolon prints the next value immediately after the
last value. One or more spaces between expressions is equivalent to
typing a semicolon.

If <expr list> ends with a comma or a semicolon, the next PRINT
begins printing on the same line, spacing accordingly. If the <expr
list > terminates without a comma or a semicolon, VBASICA prints a
Return at the end of the line. If the printed line exceeds the screen
width, VBASICA continues printing on the next physical line.

A space always follows printed numbers. A space precedes positive
numbers. A minus sign precedes negative numbers.

VBASICA Statements, Commands, and Functions 3-149

If VBASICA can represent a single precision number with six or fewer
digits in the unscaled format as accurately as represented in the scaled
format, VBASICA outputs that number in the unscaled format. For
example, 1E—7 1s output as .0000001 and 1E— & is output as
IE — 08. If a double precision number can be represented with 16 or
fewer digits in the unscaled format as accurately as represented in the
scaled format. VBASICA outputs the number in the unscaled format.
For example, 1D — 16 is output as .00000000000000001 and 1D — 17
is output as 1D — 7.

EXAMPLE:

In the following example, the commas in the PRINT statement print
each value at the beginning of the next print zone.

10 X=5
20 PRINT X+5,X-5,X*(=5),X"5
30 END
RUN
10 0 ~25 3125
Ok

In the following example, the semicolon at the end of line 20 prints
both PRINT statements on the same line. Line 40 prints a blank line
before the next prompt.

LIST

10 INPUT X

20 PRINT X "SQUARED IS" X"2 "AND";
30 PRINT X "CUBED IS" X*"3

40 PRINT

50 GOTO 10

Ok

RUN

?9

9 SQUARED IS 81 AND 9 CUBED IS 729

2l
21 SQUARED IS 441 AND 21 CUBED IS 9261

7

3-150 VBASICA

In the following example, the semicolons in the PRINT statement
print each value immediately after the preceding value. A space always
follows a number, and a space precedes positive numbers.

10 FOR X = 1 TO &
20 J=J+5
30 K=K+10
40 PRINT J;K;
50 NEXT X
Ok
RUN
BCADS 10- 420 16 30 20 40 25 &0
Ok

PRINT USING Statement

FORMAT:

PRINT USING < str expr > ; <expr list>
PURPOSE:
Prints strings or numbers in specified format.
'REMARKS:

< expr list > is a list of string or numeric expressions to be printed,
separated by semicolons.

<str expr> is a string literal or variable consisting of special
formatting characters.

<expr list> and <str expr> determine the field size and the
format of the printed strings.

'VBASICA Statements, Commands, and Functions 3-151

String Fields

When PRINT USING is used to print strings, one of three formatting
characters can be used to format the string field:

» The ! specifies that only the first character of the given string is
printed.

P \n spaces\. Two characters from the string are to be printed. If you
put spaces between the backslashes, each space adds another charac-
ter to the printed string. For example, if you use one space, three
characters are printed.

» If the string to be printed is longer than the field, VBASICA ignores
the extra characters. If the field is longer than the string, the string is
left-justified in the field and padded with spaces on the right. For
example,

10 A$="LOOK":B$="0UT"
30 PRINT USING "!",6A$;B$
40 PRINT USING "\ \";A$;B$
50 PRINT USING "\ \";A$;B§;"!!"
RUN
LO
LOOKOUT
LOOK ouT !!

P The & specifies a variable-length string field. When you specify the
field with the optional &, the string is output exactly as input. For
example,

10 A$="LOOK" :B$="0UT"

20 PRINT USING "!", A$;
30 PRINT USING "&";B%
RUN

LouT

3-152 VBASICA

Numeric Fields

When you print numbers with PRINT USING, VBASICA uses the fol-
lowing special characters to format the numeric field:

B A number sign (#) represents each digit position. Digit positions are
always filled. If the number to be printed has fewer digits than the
number of positions specified, the number is right-justified (pre-
ceded by spaces) in the field.

» You can insert a decimal point at any position in the field. If the
format string specifies that a digit is to precede the decimal point,
VBASICA always prints the digit (as 0 if necessary). VBASICA
rounds numbers as necessary.

PRINT USING "## ##"; .78
0.78

PRINT USING "### ##";987.654
987.65

In the following example, the three spaces inserted at the end of the
format string separate the printed values on the line:

PRINT USING "## . ## n.30.2,5.3,66.7T89, .254
16.20 5.30 6679 0.23

» A plus sign (+) at the beginning or end of the format string prints
the sign of the number (plus or minus) before or after the number:

PRINT USING "+##.##";-68.95,2.4,55.6,-9
-68.95 +2.40 +55.60 =090

» A minus sign (—) at the end of the format field prints negative
numbers with a trailing minus sign, as in this example:

PRINT USING "##.##-";-68.95,22.44900,-7.01
68.95- 22.45 7o0l=

VBASICA Statements, Commands, and Functions 3133

P A double asterisk (**) at the beginning of the format string fills the
leading spaces in the numeric field with asterisks. The ** also
specifies positions for two more digits. For example,

PRINT USING "**# . #";12.39,-0.9,765.1
*12.4 a9 765.1

P A double dollar sign ($$) specifies two digit positions; one is the dol-
lar sign. The 3 prints a dollar sign immediately to the left of the
formatted number. Do not use the exponential format with $$. Do
not use negative numbers unless the minus sign trails to the right.

: For example,

PRINT USING "$$###.##";456.78
$456.78

» The **§ specifies three digit positions, one of which is the dollar
sign. A **$ at the beginning of a format string combines the effect of
the preceding two symbols. Leading spaces are asterisk-filled. A dol-
lar sign is printed before the number.

PRINT USING "**$## ##";2 34
**§2.34

> A comma specifies another digit position. A comma to the left of
the decimal point in a formatting string prints a comma to the left
of each third digit left of the decimal point. VBASICA prints a
comma at the end of the format string as part of the string. The
comma has no effect if used with the exponential format. For exam-

ple,
PRINT USING "###, .###";1234.5
1,254 5O
PRINT USING "#### .##,6":1234.5
1234 .50,

3-154 VBASICA

p» Four carets (™) specify exponential format when located after
digit-position characters. The four carets allow space for E, a plus
sign, and two digits to be printed. Any decimal point position can
be specified. The significant digits are left-justified, and the exponent
is adjusted. Unless vou specify a leading or trailing plus (or minus)
sign, one digit position to the left of the decimal point is used to
print a space or a minus sign.

PRINT USING "##.##";""""234.56
2.35E+02

PRINT USING " .####""""-",888888
.8889E+06

PRINT USING "+ .##"""""; 123
.12E+03

» An underscore (_) causes the next character to be output as a literal
character:

PRINT USING " _l##.## !";12.34
112.34!

To print an underscore, put two underscore characters into the for-
mat string.

» A percent sign (%) prints a percent sign before a number if that
number is larger than the specified numeric field. If rounding causes
the number to exceed the field, a percent sign is printed in front of
the rounded number.

PRINT USING "## .##";111.22
g111.22

PRINT USING" .##"; . 999
%1.00

If the number of digits specified exceeds 24, an “lllegal function call”
error results.

VBASICA Statements, Commands, and Functions 3153

PRINT# and PRINT# USING Statements

FORMAT:
PRINT# < filenum > ,[USING < str expr > ;] <expr list>
PURPOSE:
Writes data to a sequential disk file.
REMARKS:

< filenum > is the number used when the file was OPENed for
output.

< str expr > consists of the formatting characters used with PRINT
USING.

< exprrlist > is the numeric and/or string expressions written to the
file.

PRINT# does not compress data on the disk. The data is written to the
disk in the same form that VBASICA displays it on the screen by a
PRINT statement. Delimit the data so it is input correctly to the disk.

Separate numeric expressions in < expr list> by semicolons. For
example,

PRINT#1,A;B;C;X;Y; 2

If you use commas as delimiters, the extra blanks inserted between
print fields are also written to disk.

Separate string expressions in < expr list> with semicolons. Use
explicit delimiters to format the string expressions correctly on the
disk.

For example, assume that A$ is “CAMERA"” and BS$ is 793604-1".

3-156 VBASICA

The statement:

PRINT#1,A%;B$
writes CAMERA 93604-1 onto disk. Because there are no delimiters,
this line cannot be input as two separate strings. To correct the prob-
lem, insert delimiters into the PRINT# statement as shown:

PRINT#1,A%;".";B$

CAMERA.93604-1 is written to disk. In the new format, the data can
be read back into two string variables.

If the strings contain commas, semicolons, significant leading blanks,
Returns, or linefeeds, enclose each with explicit quotation marks by
using CHR$(34). Assume that A$ is "CAMERA, AUTOMATIC” and
BS is "93604-1".
The statement:

PRINT#1,CHR$ (34);A$,CHR$ (34) ; CHR$ (34) ; B$; CHR$ (34)
writes the following to disk:

"CAMERA, AUTOMATIC" "93604-1"
and the statement:

INPUT#1,A%,B$

inputs “CAMERA, AUTOMATIC” to A$ and “93604-1" to BS.

You can also use the PRINT# statement with the USING option to
control the format of the disk file, as in this example:

PRINT#1, USING"$$### ##;" ;J;K; L

See Appendix G for more information on disk file formatting.

VBASICA Statements, Commands, and Functions 3-157

PSET Statement

FORMAT:

PSET (< absolute x >, < absolute y >) [, < attribute >]
PSET STEP (<x offset >, <y offset>) [, < attribute >]

PURPOSE:

Displays (turns on) or removes (turns off) one pixel from the screen.
for Graphics mode only.

REMARKS:

< absolute x >, <absolute y>, <x offset>, and <y offset > are
valid coordinates. See Chapter 1.1 for further information.

< attribute > is an expression returning a value 0 to 3, which deter-
mines the color of the point. An attribute of 0 sets the point to the
background color, as described in Chapter 1.1.

If you omit the attribute argument, it defaults to 3 in Screen mode 1
and to a value of 1 in Screen mode 2.

VBASICA clips out-of-range coordinates.
EXAMPLE:

10 FOR I = 0 TO 100

20 PSET (L.I1)

30 NEXT '(draw a diagonal line to (100,100))
40 FOR I = 100 TO O STEP -1

50 PSET (I.,Z).0

60 NEXT '(remove the line just drawn)

3-158 VBASICA

RANDOMIZE Statement

FORMAT:
RANDOMIZE [<expr >]
PURPOSE:
Reseeds the random number generator.
REMARKS:
< expr> is an integer, single or double precision expression used as
the random number seed. If you omit <expr >, VBASICA suspends

program execution and asks for a value. The following prompt appears
on the screen:

Random Number Seed (-32768 to 32767)°7

RANDOMIZE executes after you supply a value.

If the random number generator is not reseeded. the RND function
returns the same sequence of random numbers each time the program
is run. To change the sequence of random numbers, put a
RANDOMIZE statement at the beginning of the program and change
its argument each time you run the program.

VBASICA Statements. Commands, and Functions 3-159

EXAMPLE:

10 RANDOMIZE

20 FOR I=I TO 5

30 PRINT RND; =

40 NEXT I

RUN

Random Number Seed (-32768 ‘to 32767) ? 3
.88598 .484668 .586328 .119426 .709225
Ok

RUN
Random Number Seed (-32768 to 32767) 4
.803506 .162462 .929364 .292443 .322921
Ok
RUN
Random Number Seed (-32768 to 32767)7 3
.88598 .484668 .586328 .119426 .709225
Ok

3-160

VBASICA

READ Statement

FORMAT:
READ < varlist >
PURPOSE:
Reads values from a DATA statement and assigns them to variables.
REMARKS:

Always use a READ statement with a DATA statement. READ state-
ments assign variables to DATA statement values, one for one. READ
statement variables can be numeric or string, and the values read must
agree with the variable types specified. If they do not agree, a “*Syntax
error” results.

A single READ statement can access one or more DATA statements
(in order), or several READ statements can access the same DATA
statement. If the number of variables in < varlist > exceeds the
number of elements in the DATA statements, subsequent READ state-
ments begin reading data at the first unread element. If no subsequent
READ statements exist, VBASICA ignores the extra data.

Use the RESTORE statement to read DATA statements from the start.

VBASICA Statements, Commands, and Functions 3-161

EXAMPLE:

The following program segment READs the values from the DATA
statements into the array A. After execution, the value of A(1) is 3.08.
and so on.

80 FOR I=I TO 10

90 READ A(I)

100 NEXT I

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

The following program READSs string and numeric data from the
DATA statement in line 30:

LIST
10 . FRINT “CITY", "STATE", "ZIE"
20 READ C$.S%,2

30 DATA "DENVER," , COLORADO, 80211
40 PRINT C$,S%.Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
Ok

3-162 VBASICA

REM Statement
FORMAT:
REM < remark >
PURPOSE:
Inserts explanatory remarks and comments into a program.
REMARKS:

VBASICA does not execute REM statements. They are output exactly
as entered when the program is listed.

REM statements can be branched into from a GOTO or GOSUB
statement. Execution continues at the first executable statement after
the REM statement.

You can add remarks to the end of a line by preceding the remark
with a single quotation mark.

WARNING: Do not use REM in a DATA statement. VBASICA treats
it as data, not as a remark.

VBASICA Statements, Commands, and Functions 3-163

EXAMPLE:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=I TO 20
140 SUM=SUM +V(I)

120 FOR I=I TO 20 'CALCULATE AVERAGE
VELOCITY

130 SUM=SUM+V(I)

140 NEXT I

RENUM Command

FORMAT:
RENUM [[< new number >][,[<old number >][, < increment >]]]

PURPOSE:
Renumbers program lines.
REMARKS:

< new number > is the first line number in the new sequence. The
default is 10.

3-164 VBASICA

< old number> is the line where renumbering is to begin. The
default is the first line of the program.

<increment > is the increment used in the new sequence. The
default is 10.

RENUM changes all line number references following GOTO,
GOSUB, THEN, ON...GOTO, ON...GOSUB, and ERL statements to
reflect the new line numbers. If a nonexistent line number appears
after one of these statements, VBASICA prints the error message
“undefined line xxxxx in yyyyy’. RENUM does not change the in-
correct line number reference (xxxxx), but the line number (yyyyy) can
be changed.

You cannot use RENUM to change the order of program lines or to
create line numbers greater than 65529. An “lllegal function call”
error results in both cases.

EXAMPLES:

In the following example, the statement renumbers the entire program.
The first new line number is 10. Lines increment by 10.

RENUM

In"the following statement, VBASICA renumbers the entire program.
The first new line number is 300. Lines increment by 50.

RENUM 300, ,50
In the following statement, VBASICA renumbers the lines beginning at
900. The new numbering begins with 1000. Each line increments by
20.

RENUM 1000,900,20

VBASICA Statements, Commands, and Functions 3-165

RESET Command

FORMAT:
RESET
PURPOSE:
Closes all files.
REMARKS:
RESET closes all open files and writes all blocks in memory to disk.
Thus, if the machine loses power, VBASICA properly updates all files.
You must close all files before you remove a disk from its drive.

EXAMPLE:

998 RESET
999 END

3-166 VBASICA

RESTORE Statement

FORMAT:
RESTORE [< line >]
PURPOSE:
Reads DATA statements, beginning at a specified line.
REMARKS:
< line > is the number of a program line.
After VBASICA executes a RESTORE statement, the next READ
statement begins with the first item in the program’s first DATA state-
ment. If you specify <line >, the next READ statement starts at the
first item in the specified DATA statement.
EXAMPLE:
10 READ A,B,C
20 RESTORE

30 READ D,E,F
40 DATA 57,68,79

VBASICA Statements, Commands, and Functions 3-167

RESUME Statement

FORMAT:

RESUME
RESUME 0
RESUME NEXT
RESUME < line >

PURPOSE:

Continues program execution after an error-recovery procedure.
REMARKS:

<line > is the number of a program line.

You can use any of the four formats shown, depending on where exe-
cution resumes:

» RESUME and RESUME 0 resume execution at the statement that
caused the error.

» RESUME NEXT resumes execution at the statement immediately
following the one that caused the error.

» RESUME < line > resumes execution at the line specified.

A RESUME statement that appears outside of an error-trapping rou-
tine causes a “RESUME without error” message to appear.

3-168 VBASICA

EXAMPLE:

10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT
"TRY AGAIN":RESUME 80

RETURN Statement

FORMAT:

RETURN [< line number >]
PURPOSE:
Returns from a GOSUB.
REMARKS:
The line number is intended for use with event trapping. The event
trap routine might want to go back into the VBASICA program at a
fixed line number while still eliminating the GOSUB entry the trap
created.
Use the nonlocal return with care. Any other GOSUB. WHILE, or
FOR active at the time of the trap remains active. If the trap comes
out of a subroutine, any attempt to continue loops outside the subrou-
tine results in the “NEXT without FOR” error.
EXAMPLE:

100 RETURN 900

VBASICA Statements, Commands, and Functions 3-169

RMDIR Command

FORMAT:

RMDIR < pathname >
PURPOSE:
Removes an existing directory, for VBASICA 2.0 and later.
REMARKS:
< pathname > is the name of the directory to be deleted. RMDIR
works exactly like the DOS command RMDIR. The < pathname >
must be a string of less than 63 characters.
The < pathname > to be removed must be empty of any files except
the working directory (.) and the parent directory (..) or else VBASICA
gives a “Path not found” or a “Path/File access” error.

EXAMPLE:

In the following statement, the SALES directory on the current drive is
removed:

RMDIR "\SALES"

3-170 VBASICA

RND Function
FORMAT:
RND[(X)]

PURPOSE:

Returns a random number between 0 and 1. VBASICA generates the
same sequence of random numbers each time the program is RUN
unless vou reseed the random number generator.

If X is less than zero, RND always restarts the same sequence for any
given X. If X is greater than zero, or X is omitted, RND generates the
next random number in the sequence. If X equals zero, RND repeats
the last number generated.

EXAMPLE:

The following example prints five random numbers between 0 and
100.

10 FOR I=1 TO 5
20 PRINT INT(RND*100);
30 NEXT I

VBASICA Statements, Commands, and Functions 3-171

RUN Command

FORMAT 1:

RUN [< line >]
FORMAT 2:

RUN < filespec > [,R]

PURPOSE:

Format | executes the program in memory. Format 2 loads a disk file
into memory and runs it.

REMARKS:
< line > 1is the number of a program line.

With Format 1, execution begins at <line > . If you do not specify
<line >, execution starts at the lowest line number. VBASICA
returns to command level after it executes a RUN.

In Format 2, <filespec > is a string expression for the specification.
In VBASICA 2.0 and later, it can contain a path. Refer to Chapter 1.5
for more information on file specifications.

RUN closes all open files and deletes the current contents of memory
before loading the designated program. If you use the R option, all
data files remain open.
EXAMPLE:

RUN "NEWFIL",R
VBASICA supports the RUN and RUN < line number > forms of

the RUN statement; however, it does not support the R option. If you
want this feature, use the CHAIN statement.

3-172 VBASICA

SAVE Command

FORMAT:
SAVE ” < filespec > " [,A,P]
PURPOSE:
Saves a VBASICA program file on disk or another device.
REMARKS:

< filespec > is a string expression representing the file specification. In
VBASICA 2.0 and later, it can contain a path. Refer to Chapter 1.5 for
more information on file specifications. Device specifications other
than the diskette are legal.

The A option saves the file in ASCII format. If the A option is not
specified, VBASICA saves the file in a compressed binary format.
ASCII format takes more space on the disk, but some actions require
that files be in ASCII format. For example, the MERGE command
requires an ASCII format file, and some operating system commands
such as TYPE can require an ASCII format file.

The P option protects the file by saving it in an encoded binary format.
When a protected file is later RUN (or LOADed), any attempt to list
or edit it will fail.
EXAMPLE:

SAVE "COM2",LA
Saves the program COM2.BAS in ASCII format.

SAVE "PROG",P

Saves the program PROG.BAS as a protected file which cannot be
altered.

VBASICA Statements, Commands, and Functions 3=173

SCREEN Statement

FORMAT:
SCREEN [<mode >] [,[<burst>] [,[<apage >] [, < vpage >]]]
PURPOSE:
Sets the screen attributes.
REMARKS:

< mode > is a valid numeric expression returning an unsigned integer
value. Valid modes are the following:

0 Alpha mode at current width (40 or 80)
land 2 Graphics modes

< burst > is a valid numeric expression returning a Boolean result.
(Not currently in use.)

< apage > is the active page. This value can be nonzero only on
Screen 0. In this mode. it is a numeric expression returning an
unsigned integer from 0 to 7 for width 40, or 0 to 3 for width 80.
VBASICA sends output to the screen to this page.

< vpage > 1s the visible page. It follows the same rules as < apage >,
but selects the page to be displayed on the screen. If < vpage> is
omitted, the visible page is set to the active page.

If all parameters are legal and < mode > or <burst > changes from

their previous values, VBASICA clears the screen. In that case, the
background color is reset to black, and the foreground color to white.

3-174 VBASICA

If the mode is 0, and you specify only <apage> and < vpage~>.
VBASICA changes display pages for viewing. Initially, both active and
visual pages default to zero. By manipulating active and visual pages,
you can display one page while constructing another. You can switch
both pages instantaneously.

NOTE: Only one cursor is shared between the pages. If you are going
to switch active pages back and forth, save the cursor position on the
current page (using POS(0) and CSRLIN) before changing to another
active page. When you return to the original page, you can return the
cursor to the saved position using the LOCATE statement.

RULES:

1. Any values you enter outside these ranges result in the “Illegal func-
tion call” error. VBASICA retains the previous values.

2. You can omit any parameter. Omitted parameters assume the old
value.

EXAMPLE:
10 SCREEN 0,0,0 'select alpha mode
10 SCREEN 2 'select hi-res graphics

VBASICA Statements, Commands, and Functions 3-175

SCREEN Function

FORMAT:
x = SCREEN (<row >, <col> [, <boolean>])

PURPOSE:

Returns the ASCII code value of the character from the screen at the
specified row (line) and column.

ACTION:
x is @ numeric variable receiving the ordinal returned.

<row > is a valid numeric expression returning an unsigned integer
in the range 1 to 25.

< col > is a valid numeric expression returning an unsigned integer in
the range 1 to 40 or I to 80, depending on the width.

< boolean > is a valid numeric value or expression giving a true or
false (Boolean) result.

The ASCII code value of the character at the specified coordinates is
stored in the numeric variable. If the optional parameter < boolean >
1s given and nonzero, the color attribute for the character is returned
instead. The color attribute is a number in the range 0 to 255. This
parameter may be interpreted as follows:

» (<param > MOD 16) is the foreground color. (For the, standard
screen and printer, values of 8 through 15 indicate high intensity for
“colors” 0 through 7.)

P ((<param > MOD 128)— foreground) is the background color,
where foreground is calculated as shown.

P (<param > > 127)1s true (— 1) if the character is blinking, false
(0) if not.

3-176 VBASICA

RULE: Any values entered outside these ranges result in the “Tllegal
function call” error.

EXAMPLE:
100 X = SCREEN (10,10) 'Returns 65 if the
‘character at 10,10 is an '"A".
110 X = SCREEN (1,1,1) 'Returns the color
tattribute of the character in the
'upper left corner of the screen.
SGN Function
FORMAT:
SGN(X)
PURPOSE:

Indicates the value of X, relative to zero:
p If X >0, SGN(X) returns 1.

» If X =0, SGN(X) returns 0.

p If X <0, SGN(X) returns — 1.

EXAMPLE:
ON SGN(X)+2 GOTO 100,200,300

Branches to 100 if X is negative, 200 if X is 0, and 300 if X is positive.

VBASICA Statements, Commands, and Functions 3-177

SHELL Statement

FORMAT:
SHELL [< command-string >]
PURPOSE:

Exits the VBASICA program, runs a .COM or .EXE or .BAT program,
or a built-in DOS function such as DIR or TYPE, and returns to the
VBASICA program at the line after the SHELL statement.

REMARKS:

A .COM, .EXE, or .BAT program or DOS function that runs under
the SHELL statement is called a child process. SHELL executes child
processes by loading and running a copy of COMMAND with the /C
switch. By using COMMAND in this way, command line parameters
are passed to the child. Standard input and output can be redirected,
and built-in commands such as DIR, PATH, and SORT can be exe-
cuted.

The < command-string > must be a valid string expression contain-
ing the name of a program to run and optional command arguments.

The program name in < command-string > can have any extension.
If you supply no extension, COMMAND looks for a .COM file, then
an .EXE file, and finally, a .BAT file. If COMMAND is not found,
SHELL issues a “File not found™ error. VBASICA generates no error if
COMMAND cannot find the file specified in < command-string > .

COMMAND processes any text separated from the program name by
at least one blank as program parameters.

VBASICA remains in memory while the child process is running.
When the child finishes, VBASICA continues.

3-178 VBASICA

WARNING: Do not attempt to SHELL to VBASICA as a child pro-
cess. This option is not supported, and causes unpredictable results.
Integrity of the parent VBASICA may or may not be harmed (in RAM
only).

SHELL with no < command-string > gives you a new COMMAND
shell. You can now do anything that COMMAND allows. When you
are ready to return to VBASICA, enter the DOS command EXIT.

EXAMPLE:

SHELL (get a new COMMAND)

A>DIR (you type DIR to see files)

A>EXIT (you type EXIT to return to VBASICA)
0k (now you are back in VBASICA)

The following example writes some data to sort, uses SHELL to sort it,
then reads the sorted data to write a report:

900 OPEN "SORTIN.DAT" FOR OUTPUT AS 1
950 REM ** write data to be sorted

1000 CLOSE 1

1010 SHELL "SORT SORTIN.DAT SORTOUT.DAT"
1020 OPEN "SORTOUT.DAT" FOR INPUT AS 1
1030 REM ** Process the sorted data

10 SHELL "DIR | SORT > FILES.
20 OPEN "FILES." FOR INPUT AS 1

VBASICA Statements, Commands, and Functions 3-179

SIN Function

FORMAT:
SIN(X)
PURPOSE:
Returns the sine of X, where X is in radians.
REMARKS:
COS(X) = SIN(X + 3.14159/2).
EXAMPLE:
PRINT SIN(1.5)
yields
.9974951

See also the COS function.

3-180

VBASICA

SOUND Statement

FORMAT:
SOUND < frequency >, < duration >

PURPOSE:

Generates a sound from the speaker of a specified frequency for a
specified duration.

REMARKS:

< frequency > is the desired frequency in Hertz. It is a valid numeric
expression returning an unsigned integer from 37 to 32767.

< duration > is the desired duration in clock ticks. It is a valid
numeric expression returning an unsigned integer from 0 to 65535.
Currently, clock ticks occur 18.2 times per second. If the duration is
zero, any currently playing sound is turned off; if no sound is playing
there is no effect.

Sounds can be buffered to prevent execution from stopping when
VBASICA encounters a new SOUND statement. See the MB com-
mand in PLAY.

EXAMPLE:

2500 SOUND RND*1000+37,2 'creates random sounds.

VBASICA Statements, Commands, and Functions 3-181

SPACES Function

FORMAT:
SPACES$ (1)
PURPOSE:
Returns a string of spaces of length 1.

REMARKS:

The expression I is rounded to an integer and must be from 0 to 255,

EXAMPLE:

10 FOR I=1 TO 5
20 X$=SPACE$(I)
30 PRINT X$;I
40 NEXT I

yields

Also see the SPC function.

3-182

VBASICA

SPC Function

FORMAT:

SPC(n)
PURPOSE:
Skips spaces in a PRINT statement. n is the number of spaces skipped.
REMARKS:
You can only use SPC with PRINT and LPRINT statements. n must
be from 0 to 255. A semicolon (;) is assumed to follow the SPC(n)
command.
EXAMPLE:

PRINT "OVER" SPC(15) "THERE"
yields

OVER THERE

Also see the SPACES$ function.

VBASICA Statements, Commands, and Functions 3-183

SQR Function

FORMAT:
SQR(X)
PURPOSE:
Returns the square root of X.

REMARKS:

X must be greater than or equal to 0.

EXAMPLE:

10 FOR X = 10 to 25 STEP &
20 PRINT X, SQR(X)
30 NEXT X

vields
10 3.162278
15 3.872984

20 4.472136
25 5

3-184

VBASICA

STOP Statement

FORMAT:
STOP

PURPOSE:

Terminates program execution and returns to command level.

REMARKS:

You can use STOP statements anywhere in a program to terminate
execution. STOP is often used for debugging. When VBASICA
encounters a STOP, the following message is printed:

Break in line nnnnn
The STOP statement doesn’t close files.

VBASICA always returns to command level after a STOP is executed.
Resume execution by issuing a CONT command.

EXAMPLE:

10 INPUT A,B,C

20 K = A®2%*5.3:L = Br37.26
S0 STOF

40 M = C*K + 100:PRINT M

yields

.23 (you enter 1,2,3)
BREAK IN 30
Ok

PRINT L (you enter PRINT L)
30.76923

0k

CONT (vou enter CONT)
115.9

VBASICA Statements, Commands, and Funciions 3-185

STRS Function

FORMAT:
STR$(n)
PURPOSE:
Returns a string representation of the value of n.
EXAMPLE:

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N) GOSUB
30 100,200,300,400,500

Also see the VAL function.

3-186

VBASICA

STRING$ Function

FORMAT:

STRINGS(I,J)
STRING$(I,X$)

PURPOSE:

Returns a string of length I whose characters all have ASCII code J or
the first character of X$.

EXAMPLE:
This example:

10 DASH$ = STRING$(10,45)
20 PRINT DASH$;"MONTHLY REPORT";DASH$

yields

This example:

10 LET A$ = "HOUSTON"
20 LET X$ = STRING$(8,A$)
30 PRINT X$

yields

HHHHHHHH

VBASICA Statements, Commands, and Functions 3-187

SWAP Statement

FORMAT:

SWAP <varl1 >, <var2>
PURPOSE:
Exchanges the values of two variables.
REMARKS:

Any type variable (integer, single precision, double precision, string)
can be SWAPped. Both variables must be of the same type; otherwise,
a “Type mismatch™ error results.

EXAMPLE:

LIST

10 A$= "ONE" :B$= "ALL" : C$= "FOR"
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN

Ok

ONE FOR ALL

ALL FOR ONE
Ok

3-188 VBASICA

SYSTEM Command

FORMAT:
SYSTEM
PURPOSE:
Leaves VBASICA and returns to DOS.
REMARKS:

All files are closed before exiting VBASICA.

TAB Function

FORMAT:
TAB(1)
PURPOSE:
Moves the print position to L.
REMARKS:
If the current print position is already beyond space I, TAB goes to
that position on the next line. Space 1 is the leftmost position, and the

rightmost position is the width minus one. I must be from 1 to 255.
You can use TAB only in PRINT and LPRINT statements.

VBASICA Statements, Commands, and Functions 3-189

EXAMPLE:

10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ A%, B$

30 PRINT A$ TAB(25) B$

40 DATA "G.T.JONES", "$25.00"

yields

NAME AMOUNT
G.T. JONES $25.00

TAN Function

FORMAT;
TAN(X)
PURPOSE:
Returns the tangent of X, where X is in radians.
REMARKS:
If TAN overflows, VBASICA displays the “Overflow™ error message.
VBASICA supplies machine infinity with the appropriate sign as the
result, and execution continues.

EXAMPLE:

10Y = Q*TAN(X)/2

3-190 VBASICA

TIMES Function and Statement

FORMAT:

TIME$ = < string expr> Sets the current time.
<string expr> = TIME$ Gets the current time.

PURPOSE:

Sets or retrieves the current time.

REMARKS:
< string expr > is a valid string literal or variable.

VBASICA fetches and assigns the current time to the string variable if
TIMES is the expression in a LET or PRINT statement.

VBASICA stores the current time if TIME$ is the target of a string
assignment.

RULES:

1. If <string expr > is not a valid string. the “Type mismatch™ error
results.

N

. For <string var > = TIMES$. TIMES returns an 8-character string
in the form “hh:mm:ss” where hh is the hour (00 to 23), mm is the
minutes (00 to 59), and ss is the seconds (00 to 59).

3. For TIME$ = <string expr>, <string expr> can take one of
the following forms:

a. hh sets the hour. Minutes and seconds default to 00.
b. hh:mm sets the hour and minutes. Seconds default to 00.

¢. hh:mm:ss sets the hour, minutes, and seconds.

VBASICA Statements, Commands, and Functions 3-191

You can omit a leading zero from any of these values, but you must
include at least one digit. For example, if you want to set the time as
one half hour after midnight, you can enter TIME$ = “0:30”, but not
TIME$ = ":30”.

If any of the values are out of range, VBASICA issues the “Illegal func-
tion call” error. VBASICA retains the previous time.

EXAMPLE:

TIME$ = "08:00"
Ok

PRINT TIME$
08:00:04

Ok

This program displays the current date and time on the 25th line of
the screen and chimes on the hour:

10 KEY OFF:SCREEN O:WIDTH 40:CLS
20 LOCATE 25,5

30 PRINT DATE$, , TIME$

40 SEC = VAL(MID$(TIME$,7.2))

50 IF SEC = SSEC THEN 20 ELSE SSEC = SEC
60 IF SEC 0 THEN 1010

70 IF SEC 30 THEN 1020

80 IF SEC < 57 THEN 20

1000 SOUND 1000,2:GOTO 20

1010 SOUND 2000,8:GOTO 20

1020 SOUND 400,4 :GOTO 20

3-192 VBASICA

TIMER ON, TIMER OFF, and TIMER STOP
Statements

FORMAT:

TIMER ON
TIMER OFF
TIMER STOP

PURPOSE:

TIMER ON enables event trapping during real time.
TIMER OFF disables event trapping during real time.
TIMER STOP suspends real-time event trapping.
REMARKS:

The TIMER ON statement enables real time event trapping by an ON
TIMER statement (see ON TIMER Statement). While ON TIMER
enables trapping, VBASICA checks between every statement to see if
the timer has reached the specified level. If it has, VBASICA executes
the ON TIMER statement.

TIMER OFF disables the event trap. If an event occurs it is not
remembered if you use a subsequent TIMER ON.

TIMER STOP disables the event trap, but if an event occurs, it is
remembered and an ON TIMER statement is executed as soon as you

enable trapping.

Also see the ON TIMER statement.

VBASICA Statements, Commands, and Functions 3-193

TRON/TROFF Commands

FORMAT:

TRON
TROFF

PURPOSE:
Traces the execution of program statements.
REMARKS:

Use TRON as an aid to debugging. The TRON statement (executed in
direct or indirect mode) enables a trace flag that prints each line
number of the program as that line is executed. The numbers are
enclosed in square brackets. The trace flag is disabled with the TROFF
statement (or when a NEW command is executed).

EXAMPLE:

TRON

Ok

LIST

10 K=10

20 FOR J=1 TO 2

30 L=K + 10

40 PRINT J:K;L

50 K=K+10

60 NEXT

70 END

Ok

RUN
[10][20][30][40] 1 10 20
[60][60][30][40] 2 20 30
[50][60][70]

Ok

TROFF

Ok

3-194 VBASICA

USR Function

FORMAT:

USR [<digit>] [(<argument >)]
PURPOSE:
Calls an assembly language subroutine.
REMARKS:

< digit > specifies the USR routine being called. See the DEF USR
statement for rules governing < digit>. If you omit < digit>,
VBASICA assumes USRO.

< argument > is the value passed to the subroutine. It may be any
numeric or string expression. If a segment other than the default seg-
ment (data segment) is to be used, a DEF SEG statement must be exe-
cuted prior to a USR function call. The address given in the DEF SEG
statement determines the segment address of the subroutine.

For each USR function. a corresponding DEF USR statement must be
executed to define the USR call offset. This offset and the currently
active DEF SEG segment address determine the starting address of the
subroutine.

EXAMPLE:

100 DEF SEG = &H8000
110 DEF USRO=0

120 X=5

130 Y = USRO (X)

140 PRINT Y

The type (numeric or string) of the variable receiving the value must
be consistent with the argument passed.

VBASICA Statements, Commands, and Functions 3-195

VAL Function

FORMAT:
VAL (<string>)
PURPOSE:

Returns the numeric value of < string > . The VAL function strips lead-
ing blanks, tabs, and linefeeds from the argument string. For example,

VAL(!I_SII)
returns — 3,
REMARKS:

< string > must be a numeric value stored as a string.

VAL stops scanning the string for numeric characters as soon as it

encounters either:

» Any nonnumeric character other than blank, tab, or linefeed.

P Any nonnumeric character (including blank, tab, or linefeed) after
having found any numeric character(s).

If < string > contains no numeric characters, VAL returns 0 (zero).

See the STRY function for details on numeric-to-string conversion.

EXAMPLES:

10 READ NAME$, CITY$, STATE$, ZIP$

20 IF VAL (ZIP$) <90000 OR VAL (ZIP$)>96699
THEN PRINT NAME$ TAB (25) "OUT OF STATE"

30 IF VAL (ZIP$)>=90801 AND VAL (ZIP$)<=90815
THEN PRINT NAME$ TAB (25) "LONG BEACH"

3-196 VBASICA

The following example:
1000 ADDRESS$="27 So. Spring St."
1010 NUMBER=VAL (ADDRESS$)
1020 PRINT NUMBER
yields
27

This example yields 0:

Print VAL ("ABC")

VARPTR Function

FORMAT:

X

Il

VARPTR(< variable >)
y = VARPTR([#] < file number >)

PURPOSE:

For variables, returns the location in memory of the variable. For files,
the VARPTR function returns the address of the first byte of the file
control block (FCB) for the opened file.

REMARKS:

For both formats, the address returned is an integer from 0 to 65536.

This number is the offset into the current segment of memory as
defined by the DEF SEG statement.

VBASICA Statements, Commands, and Functions 3-197

The first format returns the address of the first byte of data identified
with <variable > . Assign a value to <variable> prior to the
VARPTR call, or you get an “Illegal function call” error. You may use
any type variable (numeric, string, array element).

NOTE: Assign all simple variables before calling VARPTR for an
array, because addresses of arrays change whenever a new simple vari-
able is assigned.

VARPTR is usually used to obtain the address of a variable or array so
it may be passed to a machine language subroutine. A function call of
the form VARPTR(A(D)) is usually specified when passing an array, so
that the lowest-addressed element of the array is returned.

The second format returns the starting address of the file control block
for the specified file. This is not the same as the DOS file control block.
The file must be OPENed before the call to VARPTR.

< file number > is tied to a currently open file. Offsets to information
in the FCB from the address returned by VARPTR are:

OFFSET SIZE CONTENTS
0 1 Mode The mode in which the file was opened:
1 Input Only
2 Qutput Only

4 Random I1/O
16 Append Only
32 Internal Use
64 Future Use

128 Internal Use

1 38 FCB Disk File Control Block. Refer to the Systems
Programmer’s Tool Kit 1I, Volume II, for contents,

39 2 CURLOC Number of sectors read or written for sequential
access. For Random access, it contains the last
record number + | read or written.

41 1 ORNOFS Number of bytes in sector when read or written.
42 1 NMLOFS Number of bytes left in input buffer.
43 3 b Reserved for future expansion.

3-198 VBASICA

QFESEL ... BILE

CONTENTS

46 1 DEVICE Device number:

0-9 Disks A: through J:
255 KYBD:

254 SCRN:

253 LPTI

251 COMI:

250 COM2

249 LPT2:

248 LPT3:

47 1 WIDTH Device width.

48 1 POS Position in buffer for PRINT.

49 1 FLAGS Internal use during LOAD/SAVE. Not used for
data files.

50 1 OUTPOS Output position used during tab expansion.

51 128 BUFFER Physical data buffer. Used to transfer data between
DOS and VBASICA. Use this offset to examine
data in sequential I/O mode.

179 2 VRECL Variable-length record size. Default is 128. Set by
length option in OPEN statement.

181 2 PHYREC Current physical record number.

183 2 LOGREC Current logical record number.

185 | il Future use.

186 2 OQUTPOS Disk file only. Output position for PRINT,
INPUT, and WRITE.

188 Colf s e g FIELD Actual FIELD data buffer. Size is determined by
/S: switch. VRECL byvtes are transferred between
BUFFER and FIELD on I/O operations. Use this
offset to examine file data in Random [/O mode.

EXAMPLE:

10 OPEN "DATA.FIL" AS #1
20 FCBADR = VARPTR(#1) 'FCBADR contains start of FCB
30 DATADR = FCBADR+188 'DATADR contains address of

'data buffer.

40 A$ = PEEK (DATADR)

'data buffer.

'A% contains 1lst byte in

VBASICA Statements, Commands, and Functions 3-199

VARPTRS Function

FORMAT:
VARPTR$ (< variable name >)

PURPOSE:

Returns a character form of the variable’s memory address. The form
is compatible for programs that might be compiled later.

REMARKS:
< variable name > is the name of a variable in the program.

VARPTRS executes substrings with the DRAW and PLAY statements
in programs that will later be compiled. With programs that will not be
later compiled, the standard syntax of the PLAY and DRAW state-
ments is sufficient to produce desired effects.

You must assign a value to the variable before calling VARPTRS.
Otherwise, an “Illegal function call” error results. Variables are defined
by executing any reference to the variable.

VARPTRS returns a three-byte string in the form:

byte 0 = type
byte 1 = low byte of address
byte 2 = high byte of address

The individual parts of the string are not considered characters.
NOTE: Because array addresses, string addresses and file data blocks
change whenever a new variable is assigned, it is unsafe to save the

result of a VARPTR function in a variable. Execute VARPTR before
each use of the result.

3-200 VBASICA

EXAMPLE:
10 PLAY "X" + VARPTR$(A$)

Uses the subcommand X (execute), plus the contents of A$, as the
string expression in the PLAY statement.

VIEW Statement

FORMAT:

VIEW [[SCREEN] [(Vx1,Vy1)-(Vx2,Vy2) [,[< color >][.[< border > J]]1]
PURPOSE:
Defines the screen limits for graphics activity, in Graphics mode only.
REMARKS:

VIEW defines a “Physical Viewport” limit from Vx1, Vyl (upper left
x,y coordinates) to Vx2, Vy2 (lower right x.v coordinates). The x and v
coordinates must be within the physical bounds of the screen. The
physical viewport defines the rectangle within the screen into which
you can map graphics.

RUN, and RUN, SCREEN, and VIEW with no arguments, define the
entire screen as the viewport.

With the < color > attribute, you can fill the view area with a color, If
you omit color, VBASICA does not fill the view area.

With the < border> attribute, you can draw a line surrounding the

viewport if space for a border is available. If you omit < border >,
VBASICA draws no border.

VBASICA Statements, Commands, and Functions 3-201

The [SCREEN] option dictates that the x and y coordinates are abso-
lute to the screen, not relative to the border of the physical viewport,
and VBASICA plots only graphics within the viewport.

Out-of-range coordinates are clipped.

EXAMPLE:

For the following form, all points plotted are relative to the viewport.
That is, VxI and Vyl are added to the x and v coordinates before plot-
ting the point on the screen.

VIEW (Vxl,Vyl)-(Vx2,Vy2)

If the following command is executed, then the point set down by the
statement PSET (0.0).3 will be at the physical screen location 10,10.

VIEW (10,10)-(200,100)

For the following form, all coordinates are screen absolute rather than
viewport relative;

VIEW SCREEN (Vxl,Vyl)-(Vx2,Vy2)

If VBASICA executes the following, then the point set down by the
statement PSET (0,0),3 will not appear because 0,0 is outside the
viewport. PSET (10,10),3 is within the viewport, and places the point
in the upper left corner of the viewport.

VIEW SCREEN (10,10)-(200,100)

Many VIEW statements can be executed. If the newly described
viewport is not wholly within the previous viewport, the screen can be
reinitialized with the VIEW statement. Then the new viewport can be
stated. If the new viewport is entirely within the previous one, as in the
following example, the intermediate VIEW statement isn’t necessary.

3-202 VBASICA

This example opens three viewports, each smaller than the previous
one. In each case. a line defined to go beyond the borders is pro-

P

280
300
320
340
360
380
400
420
440
460
480
500
520

grammed, but appears only within the viewport border.

VIEW:REM ** Make the viewport the entire screen
VIEW (10,10) - (300,180),,1

CLS

LINE (0,0) -(310,190),1

LOCATE 1,11: PRINT "A big viewport"
VIEW SCREEN (50,50)-(250,150),,1
CLS:REM**Note, CLS clears only viewport
LINE (3500, 0)-{0, 189} ;1

LOCATE 9,9: PRINT "A medium viewport"
VIEW SCREEN (80,80)-(200,125),.1

CLS

CIRCLE (186,100}, 20,1

LOCATE 11,9: PRINT "A small viewport"

VBASICA Statements, Commands, and Functions 3-203

VIEW PRINT Statement

FORMAT:
VIEW PRINT [<top screen line > TO < bottom screen line >]
PURPOSE:
Sets the boundaries of the screen text window.
REMARKS:

VIEW PRINT without top and bottom line parameters initializes the
whole screen area as the text window.

Statements and functions that operate within the defined text window
include CLS, LOCATE, PRINT, and SCREEN.

The Screen Editor limits functions such as scroll and cursor movement
to the text window.

Also see the VIEW statement.

3-204 VBASICA

P

WAIT Statement

FORMAT:
WAIT < port>,<and byte > [, <xor byte>]

PURPOSE:

Suspends program execution while monitoring the status of a machine
port.

REMARKS:

< port> is a numeric expression returning an integer from 0 to
65535.

< and byte > is a numeric expression returning an integer from 0 to
255 and matches a byte coming in from the < port>.

< xor byte > is a numeric expression returning an integer from 0 to
255 and checks a byte coming in from the < port>.

The WAIT statement suspends execution until a specified machine
input port develops a specified bit pattern. The data read at the port is
XOR’ed with the integer expression XOR byte and then AND’ed with
the AND byte. If the result is zero, VBASICA loops back and reads the
data at the port again. If the result is nonzero, execution continues
with the next statement.

WARNING: It is possible to enter an infinite loop with the WAIT
statement. CTRL-C exits the loop.

VBASICA Statements, Commands, and Functions 3-205

WHILE..WEND Statement

FORMAT:

WHILE < expr >
[<loop statements >]

WEND
PURPOSE:

Executes a series of statements in a loop as long as a given condition is
true.

REMARKS:

If <expr> is not zero (that is, true), the loop statements are executed
until the WEND statement is encountered. VBASICA then returns to
the WHILE statement and checks <expr>. If <expr> is still true,
the process is repeated. If <expr> is not true, execution resumes at
the statement after the WEND statement. WHILE/WEND loops can
be nested to any level. Each WEND matches the most recent WHILE.
An unmatched WHILE statement causes a “WHILE without WEND”
error, an unmatched WEND statement causes a “WEND without
WHILE” error.

EXAMPLE:

90 'BUBBLE SORT ARRAY A$
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=0
120 FOR I=1 TO J-1
130 IF A$(I)>A$(I+1) THEN
SWAP A$(I), A$(I+1):FLIPS=1
140 NEXT I
150 WEND

3-206 VBASICA

WIDTH Statement

FORMAT:

WIDTH < size > P
WIDTH < file no. >, < size >
WIDTH < dev >, <size>

PURPOSE:

Sets the printed line width in number of characters for the screen and
line printer.

REMARKS:

< size > is a valid numeric expression returning an integer result from
0 to 255. This value is the new width.

< file no. > is a valid numeric expression returning an integer. This
value is the number of the file OPENed.

< dev > isa valid string expression returning the device identifier.

Depending on the device specified, the following actions are possible:

WIDTH <size>
WIDTH "SCRN:", <size>

These commands set the screen width. VBASICA allows only 40- or
80-column width.

VBASICA Statements, Commands, and Functions 3-207

NOTE: Changing the screen width clears the screen. Screen mode | is
always 40 columns wide, and Screen mode 2 is always 80 columns. If
you are in either of these modes and ask to change the width, the
mode changes to the appropriate one of these two modes.

WIDTH "LPT1:",<size>

Used as a deferred width assignment for the line printer. This form of
WIDTH stores the new width value without changing the current
width setting. A subsequent OPEN “LPT1:” FOR OUTPUT AS
< number > uses this value for width while the file is open.

WIDTH <file no.>,<size>

If the file is open to LPTI:, the line printer’s width is immediately
changed to the new size specified. This allows the width to be changed
while the file is open. This form of WIDTH affects only LPT1:.

RULES:

1. Valid widths for the screen are 40 and 80. The valid width for the
line printer is | to 255. Any value entered outside these ranges
results in the “Illegal function call” error. VBASICA retains the pre-
vious value.

. Width has no effect on the keyboard (KYBD:).

[Se]

3. Maximum Epson line printer width is 80. WIDTH, however, does
not complain about values between 80 and 255.

4. Specifying WIDTH 255 for the line printer (LPT1:) disables line
folding.

3-208 VBASICA

EXAMPLE:

10:MIDTH “LPT1:"; D
20 OPEN "LPT1:" FOR OUTPUT AS #1

6020 WIDTH #1,40

In the preceding example, line 10 stores a line printer width of 75 char-
acters per line. Line 20 opens file #1 to the line printer and sets the
width to 75 for subsequent PRINT #1.... statements. Line 6020
changes the current line printer width to 40 characters per line.

WINDOW Statement
FORMAT:

WINDOW [[SCREEN] (Wx1,Wy1)-(Wx2,Wy2)]
PURPOSE:

Defines the logical dimensions of the current viewport, for Graphics
mode only.

REMARKS:

(Wx1,Wy1)-(Wx2,Wy2) are the world coordinates you specify to define
the coordinates of the lower left and upper right screen border.

SCREEN inverts the v-axis of the world coordinates so that screen

coordinates follow the traditional Cartesian system: x increases left to
right, and y decreases top to bottom.

VBASICA Statements, Commands, and Functions 3-209

With WINDOW, you can redefine the screen border coordinates. You
can also draw lines, graphs, or objects in space not bounded by the
physical dimensions of the screen with world coordinates. When you
redefine the screen, you can draw graphics within a customized map-
ping system.

VBASICA converts world coordinates into physical coordinates for
subsequent display within the current viewport. To make this transfor-
mation from world space to the physical space of the viewing surface
(screen), you must know what portion of the (floating-point) world
coordinate space contains the information to be displayed. This rec-
tangular region in world coordinate space is a window.

RUN or WINDOW with no arguments disables window transforma-
tion. The WINDOW SCREEN variant inverts the normal Cartesian
direction of the y coordinate.

For example, in the default, a section of the screen appears as:

0,0 50.0 100,0
| y increases
100,0

0.100 50,100 100,100

3-210 VBASICA

Now execute the following:
WINDOW (-1,-1)-(1,1)
and the screen appears as:
=] 0,1 1
1 v increases

0.0

| v decreases

i B 01 ol

If the variant:
WINDOW SCREEN (-1,-1)-(1,1)

1s executed then the screen appears as:

il O 0.~ 1 I5—1
1 v decreases
0,0
| ¥ increases

=l 0.1 1,1

VBASICA Statements, Commands, and Functions 3-211

The following example illustrates two lines with the same endpoint
coordinates. The first is drawn on the default screen, and the second is
on a redefined window.

200 LINE (100,100) - (150,150), 1

220 LOCATE 2,20:PRINT "The line on the default screen"”
240 WINDOW SCREEN (100,100) - (200,200)

280 LINE (100,100) - (150,150}, 1

280 LOCATE 8, 18:PRINT "& the same line on
a redefined window"

WRITE Statement

FORMAT:

WRITE[< expr list >]
PURPOSE:
Displays data on the screen.
REMARKS:

<expr list > 1is a list of numeric and/or string expressions. Commas
separate the expressions. If <expr list > is omitted, a blank line is
output. If <expr list > is included, the values of the expressions are
displayed on your screen.

The output items are separated by commas. Strings are delimited by
quotation marks. After the last item in the list appears, VBASICA
inserts a carriage return/linefeed.

WRITE outputs numeric values using the same format as the PRINT
statement.

3212 VBASICA

—

EXAMPLE:

10 A=80:B=90:C$="THAT'S ALL"
20 WRITE A,B,.C$

RUN

80,90, "THAT'S ALL"

Ok

WRITE# Statement

FORMAT:
WRITE# < filenum >, < expr list >
PURPOSE:
Writes data to a sequential file.
REMARKS:
< filenum > is the number under which a file was opened.

The expressions in < expr list > are string or numeric expressions,
separated by commas.

Unlike PRINT#. WRITE# inserts commas between items as they are
written to disk, and delimits strings with quotation marks. You do not
need to put explicit delimiters in the list. A carriage return/linefeed
sequence is inserted after the last item is written to disk.

VBASICA Statements, Commands, and Functions 3213

Assume that A$ is "CAMERA” and B$ is “93604-1".
WRITE#1,A$,B$

writes this to disk:
"CAMERA" , "93604-1"

A subsequent INPUT# statement, such as:
INPUT#1,A%,B%

inputs “CAMERA" to A$ and “93604-1" to BS.

3-214

The statement:

VBASICA

VBASICA and Communications

This chapter describes the VBASICA statements required to support
asynchronous serial communication with other computers and peri-
pherals, through the RS-232-C ports.

4.1 Communication I/O

Because you open the communications port as a file, all Input/output
statements valid for disk files are valid for COM.

COM sequential input statements are the same as those for disk files:
INPUT # < file number > ,.LINE INPUT # < file number >, and the
INPUTS$! function.)

COM sequential output statements are the same as those for disk:
PRINT # < file number > and PRINT # < file number > USING.

Refer to INPUT and PRINT for details of coding syntax and usage.

GET and PUT are only slightly different for COM files. See the GET
and PUT statements for COM.

The TTY program that follows enables your VBASICA computer to
be used as a conventional terminal. In addition to full-duplex com-
munication with a host, the TTY program allows data to be down-
loaded to a file. Conversely, a file can be up-loaded (transmitted) to
another machine.

In addition to demonstrating the elements of asynchronous communi-

cation, this program is useful in transferring VBASICA programs and
data to and from your computer.

VBASICA and Communications 4-1

NOTE: The TTY program is set up to communicate using XON and
XOFF. You may want to modify it for your environment.

4.2 'The TTY Program

10 SCREEN 0,0:WIDTH 80

15 KEY OFF:CLS:CLOSE

20 DEFINT A-Z

25 LOCATE 25,1

30 PRINT STRING$(60," ")

40 FALSE=0:TRUE= NOT FALSE

50 MENU=5 ' Value of MENU key (CTRL-E)
60 XOFF$=CHR$(19):XON$=CHR$(17)

100 L.OCATE 25,1:PRINT "Async TTY ‘Program "
110 LOCATE 1,1:LINE INPUT "Speed? ";SPEED$
120 COMFIL$="COM1l:"+SPEED%+" ,E,7"

130 OPEN COMFIL$ AS =#1

200 PAUSE=FALSE

210 A$=INKEY$: IF A$="" THEN 230

220 IF ASC(A$)=MENU THEN 300 ELSE PRINT #1,A$:
230 IF EOF(1l) THEN 210

240 IF LOC(1)>128 THEN PAUSE=TRUE: PRINT #1,XOFF$;
250 A$=INPUT$(LOC(1),#1)

260 PRINT A$;:IF LOC(1)>0 THEN 240

270 IF PAUSE THEN PAUSE=FALSE:PRINT #1,XON$:

280 GOTO 210

300 LOCATE 1,1:PRINT STRING$(30," "):LOCATE 1,1
310 LINE INPUT"File? " ;DSKFIL$

400 LOCATE 1,1:PRINT STRING$(30," "):LOCATE 1,1

410 LINE INPUT"(T)ransmit or (R)eceive? " ;TXRX$

420 IF TXRX$="T" THEN OPEN DSKFIL$ FOR INPUT
AS #2:GOTO 1000

430 OPEN DSKFIL$ FOR OUTPUT AS #2

440 PRINT #1,CHR$(13);

4-2 VBASICA

500
510
520
530
540
550

600
610
620
630
640

650

1000
1010
1020
1030
1040
1050

1060

9989

IF EOF(1) THEN GOSUB 600

IF LOC(1)>128 THEN PAUSE=TRUE: PRINT #1,XOFF$;
A$=INPUT$ (LOC(1),#1)

PRINT #2,A$;:IF LOC(1)>0 THEN 510

IF PAUSE THEN PAUSE=FALSE:PRINT #1,XON$;

GOTO 500

FOR I=1.T7C 5060

IF NOT EOF(l) THEN I=9999

NEXT I

IF I>9999 THEN RETURN

CLOSE #2:CLS:LOCATE 25,10:PRINT
"# Download complete *";

GOTO 200

WHILE NOT EOF(Z2)

A$=INPUT$H(1.#2)

PRINT #1,A$;

WEND

PRINT #1,CHR$(26); 'CTRL-Z to make close file.
CLOSE #2:CLS:LOCATE 25,10:PRINT

n#% Upload complete **™;

GOTO 200

CLOSE:KEY ON

4.3 Notes on the TTY Program

LINE

NUMBER COMMENTS

10
15

Sets the screen to Alpha mode and sets the width to 80.

Turns off the soft key display, clears the screen, and ensures all files are
closed.

NOTE: Asynchronous implies character 1/0, as opposed to line or
block 1/O. Therefore, terminate all PRINTS, either to the COM file or
to the screen, with a semicolon (:). This action suppresses the carriage
return/line feed normally issued at the end of a PRINT statement.

VBASICA and Communications 4-3

LINE
NUMBER

COMMENTS

20

25-30
40

50

60
100-130

200-280

300-310
400-420

4-4

Defines all numeric variables as INTEGER. Primarily for the
subroutine at 600-620.

Clears the 25th line starting at column 1.

Defines Boolean TRUE and FALSE,

Defines the ASCII (ASC) value of the MENU key.
Defines the ASCII XON, XOFF characters.

Prints program ID and asks for baud rate (speed). Opens
communications to file number 1. even parity, 7 data bits.

Programmer exercise: Modify this section to check for valid baud rates.

Performs full-duplex 1/O between the video screen and the device
connected to the RS-232-C connector as follows:

. Read a character from the keyboard into A$. INKEY$ returns a
null string if no character is waiting.

2. If no character is waiting, then check if any characters are being
received. If a character is waiting at the keyboard, and:

— If the character is the MENU key. the user is ready to download
a file, so get the filename.

— If character (A$) is not the MENU key, send it by writing to the
communication file (PRINT #1...).

3. At 230 see if any characters are waiting in COM buffer. If not, then
go back and check keyboard.

4. At 240, if more than 128 characters are waiting, then set PAUSE
flag saying we are suspending input. Send XOFF to host, stopping
further transmission.

5. At 250-260, read and display contents of COM buffer on screen
until empty. Continue to monitor size of COM buffer (in 240).
Suspend transmission if the program falls behind.

6. Finally, resume host transmission by sending XON only if
suspended by previous XOFF. Repeat process until MENU key is
struck.

Get disk file name we are downloading to. Open file to tie number 2.

Asks if file named is to be transmitted (uploaded) or received
(downloaded).

VBASICA

LINE
NUMBER

COMMENTS

430

500

510

520-530

540-550

600-650

1000-1060

9999

Sends a carriage return to the host to begin the download. This program
assumes that the last command sent to the host was to begin such a
transfer and was missing only the terminating carriage return. If a DEC
system is the host, then such a command might be the following:

COPY TTY: = MANUAL.MEM < MENU key >
where the MENU key was struck instead of Return.

When no more characters are being received (LOC(x) returns 0), then
perform a time-out routine (see line 600).

Again, if more than 128 characters are waiting, signal a pause and send
XOFF to the host while up.

Read all characters in COM queue (LOC(x)) and write them to disk
(PRINT #2..) until caught up.

If a pause was issued, restart host by sending XON and clear the
pause flag. Continue process until no characters are received for a
predetermined time.

This is the time-out subroutine. The FOR loop count was determined
by experimentation. In short, if no character is received from the host
for 17-20 seconds, then transmission is assumed complete. If any
character is received during this time (line 610), then I is set well above
FOR loop range to exit loop and then return to caller. If host
transmission is complete, close the disk file and return to being a
terminal.

Transmit routine. Until end of disk file do the following:

Read one character into A$ with INPUTS statement. Send character to
COM device in 1020. Send a CTRL-Z at end of file in 1040 in case
receiving device needs one to close its file. Finally, in lines 1050 and
1060, close our disk file, print completion message and go back to
conversion mode in line 200.

Presently not executed. As an exercise, add some lines to the routine
400-420 to exit the program via line 9999. This line closes the COM
file left open and restores the soft key display.

VBASICA and Communications s

4.4 The COM I/O Functions

The most difficult aspect of asynchronous communication is process-
ing characters as fast as they are received. At rates above 2400 bps,
character transmission must be suspended from the host long enough
to catch up. This suspension can be done by sending XOFF (CTRL-S)
to the host and XON (CTRL-Q) when ready to resume.

VBASICA provides three functions to help determine when an “over-
run’ condition is imminent:

LOC(x)

LOF(x)

EOF(x)

Returns the number of characters in the input queue
waiting to be read. The input queue can hold more than
255 characters (determined by the /C: switch). If there
are more than 255 characters in the queue, LOC(x)
returns 255. Because a string is limited to 255 characters,
this practical limit alleviates the need for the programmer
to test for string size before reading data into it. If fewer
than 255 characters remain in the queue, LOC(x) returns
the actual count.

Returns the amount of free space in the input queue—
that is, /C: <size> — LOC(x). You can use LOF to
detect when the input queue is getting full. LOC is ade-
quate for this purpose, as shown in the programming
example.-.

If true (— 1), indicates that the input queue is empty.
Returns false (0) if any characters are waiting to be read.

These errors can occur:

1. “Communication Buffer Overflow” occurs if a read is attempted
after the input queue is full (that is, LOC(x) returns 0).

o]

. “Device 1/O Error” occurs if any of the following line conditions are

detected on receive: Overrun Error (OE), Framing Error (FE), or
Break Interrupt (BI). The error is reset by subsequent inputs but the
character causing the error is lost.

3. “Device Fault” occurs if data set ready (DSR) is lost during 1/0.

4-6

VBASICA

A

Error Messages

VBASICA provides the following error messages. The error codes and
messages described in this appendix can appear when you are using the
VBASICA Interpreter. Each message is explained and corrective mea-
sures are suggested, when appropriate.

CODE
NUMBER MESSAGE

l NEXT without FOR
A variable in a NEXT statement does not correspond to any previously
executed, unmatched FOR statement variable.

2 Syntax error
A line contains an incorrect sequence of characters, such as unmatched
parentheses, misspelled command or statement, incorrect punctuation,
and so on.

3 Return without GOSUB

A RETURN statement appears without a previous, unmatched
GOSUB statement.

4 Qut of data
VBASICA executes a READ statement when no remaining DATA
statements exist that contain unread data.

5 Illegal function call
An out-of-range parameter is passed to a math or string function. An
FC error can also occur as the result of:

» A negative or unreasonably large subscript
A negative or zero argument with LOG
A negative argument to SQR

A negative mantissa with a noninteger exponent

Yy vy %

A call to a USR function for which the starting address was not
given

B An incorrect argument to MIDS, LEFTS$, RIGHTS, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, STRING$, SPACES, INSTR, or
ON..GOTO

Error Messages A-1

CODE

NUMBER MESSAGE
6 Overflow
The result of a calculation is too large to be represented in VBASICA
number format. If underflow occurs, the result is zero and execution
continues without an error.
7 Out of memory
A program is too large, has too many FOR loops or GOSUBs, has too
many variables, or contains expressions that are too complicated.
8 Undefined line
A line reference in a GOTO, GOSUB, IF...THEN...ELSE, or DELETE
refers to a nonexistent line.
9 Subscript out of range
An array element 1s referenced with a subscript outside the dimensions
of the array or with the wrong number of subscripts.
10 Redimensioned array
Two DIM statements are given for the same array, or a DIM statement
is given for an array when the default dimension is 10.
11 Division by zero
An expression contains a division by zero or the operation of involution
raises zero to a negative power. Machine infinity with the sign of the
numerator is supplied as the result of the division, or positive machine
infinity 1s supplied as the result of the involution. In both cases,
execution continues.
12 Illegal direct
You have entered a statement that is illegal in direct mode.
13 Type mismatch
A string variable name is assigned a numeric value (or vice versa), or a
function that expects a numeric argument is given a string argument (or
vice versa).
14 Out of string space
String variables caused VBASICA to exceed the remaining free
memory. YBASICA allocates string space dynamically until it runs out
of memory.
15 String too long
You have tried to create a string more than 255 characters long.
16 String formula too complex

A-2

A string expression is too long or too complex. The expression must be
broken into smaller expressions.

VBASICA

CODE

NUMBER MESSAGE
7 Can’t continue
You have tried to continue a program that;
» Has halted due to an error
» Modified during a break in execution
P Does not exist
18 Undefined user function
A USR function is called before the function definition (DEF
statement) is given,
19 No RESUME
You entered an error-trapping routine that lacks a RESUME statement.
20 RESUME without error
VBASICA encounters a RESUME statement before it enters an error-
trapping routine.
21 Unprintable error
An error message is not available for the error condition that exists. An
error with an undefined error code usually causes this error,
22 Missing operand
An expression contains an operator without a following operand.
23 Line buffer overflow
You tried to input a line with too many characters.
24 Device Timeout
VBASICA does not receive information from an 1/Q device within a
predetermined amount of time.
25 Device 1/0 Error
Fault status is returned from the parallel and serial devices. Usually
indicates a hardware error in the printer or serial communications
channel.
26 FOR without NEXT
A FOR does not have a matching NEXT.
29 WHILE without WEND
A WHILE statement does not have a matching WEND.
30 WEND without WHILE
A WEND does not have a matching WHILE.
50 Field overflow

Error Messages

A FIELD statement tried to allocate more bytes than were specified for
the record length of a random file.

A-3

CODE

NUMBER MESSAGE

51 Internal error
An internal malfunction has occurred in VBASICA. Report to your
dealer the conditions under which the message appeared.

52 Bad file number
A statement or command references a file with a file number that is not
OPEN, or is out of the range of file numbers specified at initialization.

53 File not found
A LOAD, KILL, or OPEN statement references a disk file that does not
exist.

54 Bad file mode
You have tried to use PUT, GET, or LOF with a sequential file, to
LOAD a random file, or to execute an OPEN with a file mode other
than I, O, or R.

35 File already open
VBASICA issues a sequential output mode OPEN for a file already
open, or a KILL is given for an open file.

57 1/O error
An 1/O error occurs on a device 1/O operation. This error is fatal; the
operating system cannot recover from the error. Formerly was Disk 1/O
€rTor.

58 File already exists
The filename specified in a NAME statement is identical to a filename
already in use on the disk.

61 Disk full
All disk storage space is in use.

62 Input past end
VBASICA executes an INPUT statement for a null (empty) file, or after
all the data in the file was INPUT. To avoid this error, use the EOF
function to detect end-of-file.

63 Bad record number
The record number in a PUT or GET statement is greater than the
maximum allowed (32,767) or equal to zero.

64 Bad file name
An illegal form is used for the filename in a LOAD, SAVE, KILL, or
OPEN statement. for example, a filename with too many characters.

66 Direct statement in file

A-4

VBASICA encountered a direct statement in the file while LOADing an
ASCII-format file. VBASICA terminates the LOAD.

VBASICA

—

CODE
NUMBER

MESSAGE

67

68

69

70

71

12

Too many files
You tried to create a new file (using SAVE or OPEN) when all 255
directory entries are full.

Device Unavailable

An attempt is made to open a file to a nonexistent device. Hardware
may not exist to support the device, such as LPT2: or LPT3:, or you
may have disabled it. This error occurs if VBASICA executes an OPEN
“COM1..., statement but you disable RS-232-S with the /C:0 switch
directive on the command line.

Communication Buffer Overflow

VBASICA executes a communication input statement but the input
queue is already full. Use an ON ERROR GOTO statement to retry the
input when this condition occurs. Subsequent inputs attempt to clear
this fault unless characters continue to be received faster than the
program can process them. In this case several options are available;

1. Increase the size of the COM receive buffer with the /C: switch.

2. Implement a hand-shaking protocol with the host/satellite such as
XON/XOFF, as demonstrated in the TTY programming example,
to turn transmit off long enough to catch up.

31 Usea Jower baud rate for transmit and receive

Disk Write Protect

One of the three hard disk errors returned from the diskette controller.
This error occurs when vou try to write to a write-protected diskette.
Use an ON ERROR GOTO statement to detect this situation and
request user action.

Disk Not Ready
The diskette drive door is open or a diskette is not in the drive. Recover
with an ON ERROR GOTO statement.

Disk Media Error

Occurs when the FDC controller detects a hardware or media fault.
This error usually indicates harmed media. Copy existing files to a new
diskette and reformat the damaged diskette. FORMAT flags the bad
tracks and places them in a file badtrack. The remainder of the diskette
is now usable.

Error Messages

A-3

B

Extended Codes

Certain keys or combinations of keys cannot return a value within the
ASCII code range. These keys are remapped to generate an extended
code when VBASICA executes an INKEY$ statement. The codes
returned by the INKEY$ statement consist of an ASCII null (00) as
the first part of the two-byte string. If a two-byte string is received by
INKEY$, then check the second key value to determine the key
pressed. The ASCII code in decimal and the associated key(s) are
shown below:

SECOND
CODE MEANING
15 Shift Tab, —
39-68 Function keys 1 through 10 (when not used as soft keys)
71 Home
72 Cursor Up
75 Cursor Left
77 Cursor Right
80 Cursor Down
82 Insert
83 Delete
84-93 Shifted function keys | through
94-103 CTRL function keys 1 throug!
119 CTRL-Home

NOTE: This appendix will be enh .d with future releases of this
product.

Extended Codes B-1

ASCII Character Codes

ASCII Value

Screen Code

Decimal Hex Character Name Keystroke
000 00 (null) NUL —
001 01 (€] SOH CTRL-A
002 02 @ STX CTRI.-B
003 03 v ETX CTRL-C
004 04 * EOT CTRL-D
005 05 rs ENQ CTRL.-E
006 06 'Y ACK CTRL-F
007 07 (beep) BEL CTRL-G
008 08 a BS CTRL-H
009 09 (tab) HT CTRI.-1
010 0A (line feed) LE CTRL-J
0l1 0B (home) VT CTRL-K
012 ocC (form feed) FE CTRL-L
013 oD (carriage return) CR CTRL-M
014 0OE 44 SO CTRL-N
015 OF Lt Sl CIRL-O
016 10 - DLE CTRIL.-P
017 | - DCI CTRL-Q
018 |2 } DC2 CTRL-R
019 13 1 DC3 CTRL-S
020 14 ar DC4 CTRL.-T
021 15 f NAK CTRI.-U
022 16 - SYN CTRL-V
023 17 L ETB CTRIL.-W
024 18 t ; CAN CTRIL-X
025 19 | EM CTRE-Y
026 1A — suB CTRL-Z
027 1B o ESC Escape Key
028 1C (cursor right) FS
029 1D (cursor left) GS
030 1E (cursor up) RS
031 IE (cursor down) us

ASCII Character Codes C-1

ASCI Value

Decimal

032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
(58
059
060
061
062
063

Hex

20
21
22
23
24
25
26
27
28
29
2A
2B
20
2D
21:
2F
30
31
32
33
34
35
36
2373
38
39
3A
B
ac
k1D
3E
3F

Screen
Character

(space)
1

5

T® 2 FH

' — —

Pt e B0~ DR R W K -

o N I

ASCIl Value
Decimal

064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081

082
083
084
085
086
087
088
089
090
091

092
093
094
095

Hex

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
E1b
41
50
31
52
53
54
558
56
57
58
59
SA
5B
5C
5D
51
5F

Screen
Character

@
A
B
C

o)

el i ol Sl e i e

it L L ool 6 Pl

25

VBASICA

ASCILI Value

Screen ASCII Value Screen
Decimal Hex Character Decimal Hex Character
096 60 . 128 80 G
097 61 a 129 81 u
098 62 b 130 82 @
099 63 & 131 83 A
10 o4 d 132 84 L
101 65 ¢ 133 85 a
102 66 { 134 h{¢) d
103 67 g I35 87 ¢
104 08 h 136 88 @
105 oY i 137 89 e
106 6A i 138 BA e
107 6B k 139 8B i
108 6C 1 140 8C |
109 ah m 141 80D i
110 ol: n 142 1B A
I oF o 143 81 A
12 70 P 144 90 E
113 71 (145 91 B
114 2 1 140 92 4
115 73 § 147 93 o
116 74 1 148 94 o
117 75 u 149 95 o
118 76 v 150 96 [t
119 57 w 151 97 u
120 78 X 152 98 v
121 79 y 153 99 0
122 TA 7 154 9A U
123 B ' 155 9B ¢
124 7e ; 156 9C £
125 TD H 157 9D ¥
126 7E ~ 158 9E Pt
127 TF (i85 159 9F l

ASCIH Character Codes -3

ASCH Value

Decimal

16O
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
i
178
2
180
181

182
183
184
185
180
187
188
189
190
191

Hex

Al
Al
A2
A3
A4
AS
A
A7
AR
AY
AN
AR
AC
AD
AlL
Al
130
11
132
133
134
135
136
137
B8
139
BA
BB
He
BD
Bl
Bl

Screen
Character

ASCH Value
Decimal

192
193
194
195
196
197
198
199
200
201
202
203
204
205
200
207
208
2
210
211
212
2|3
214
215
216
217
218
219
220
221
277
223

Hex

0
'l
612
3
4
)
[6
"7

R

9
CA
oB
I
13
Cl
K
1
(8]
132
N3
14
5
D6
7
18
1
DA
DB
e
Db
DE
D

L
A

-

Screen
Character

VBASICA

ASCII Value

Screen
Decimal Hex Character
224 EO a
225 El 8
226 152 &
227 E3 T
228 E4 v
229 ES i
230 E6 u
231 E7 T
232 [E8 (=]
233 E9 -
234 EA 0
235 EB 6
236 EC o
237 ED &
238 EE (
239 EE n
240 10 =
241 I°1 1
242 12 E
243 13 <
244 b4 i
245 IS)
246 6] :
247 17 ~
248 8 o
249 F9 ‘
250 FA .
251 FB uf
252 FC n
253 ED 2
254 FE "
255 FF (blank ‘FF")

ASCII Character Codes C-5

Mathematical Functions

Functions not intrinsic to VBASICA are calculated as follows.

FUNCTION VBASICA EQUIVALENT
Secant SEC(X) = 1/COS(X)
Cosecant CSC(X) = 1/SIN(X)
Cotangent COT(X)= 1/TAN(X)
Inverse sine ARCSIN(X) = ATN(X/SQR(— X*X + 1))

Inverse cosine

Inverse secant

Inverse cosecant

Inverse cotangent
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent
Hyperbolic secant
Hyperbolic cosecant
Hyperbolic cotangent
Inverse hyperbolic sine
Inverse hyperbolic cosine
Inverse hyperbolic tangent
Inverse hyperbolic secant
Inverse hyperbolic cosecant

Inverse hyperbolic cotangent

ARCCOS(X) = — ATN(X/SQR(— X*X + 1)) + 1.5708

ARCSEC(X) = ATN(X/SQR(X*X — 1))
+ SGN(SGN(X) — 1)*1.5708

ARCCSC(X) = ATN(X/SQR(X*X — 1))
+ (SGN(X) — 1)*1.5708

ARCCOT(X)=ATN(X) + 1.5708

SINH(X) = (EXP(X) — EXP(— X))/2

COSH(X) = (EXP(X) + EXP(— X))/2

TANH(X) = EXP(— X)/EXP(X) + EXP(— X))*2 + 1
SECH(X) = 2/(EXP(X) + EXP(— X))

CSCH(X) =2/(EXP(X)— EXP(— X))
COTH(X)=EXP(— X)/(EXP(X)— EXP(— X))*2 + 1
ARCSINH(X) = LOG(X + SQR(X*X + 1))
ARCCOSH(X) = LOG(X + SQR(X*X — 1))
ARCTANH(X) =LOG((1 + X)/(1 — X))/2
ARCSECH(X) = LOG((SQR(— X*X +) + 1)/X)
ARCCSCH(X) = LOG((SGN(X)*SQR(X*X + 1) + 1)/X
ARCCOTH(X)=LOG((X + 1)/(X — 1))/2

Mathematical Functions

E

Keyboard Scan-Codes

These are the scan-codes for an American keyboard.

HEX DECIMAL HEX DECIMAL
SCAN SCAN SCAN SCAN
KEY ID CODE CODE KEY ID CODE CODE
ESC 01 01 Al 2B 43
1! 02 02 Z, 2C 44
2@ 03 03 X 2D 45
34 04 04 c 2E 46
4% 05 05 AY 2F 47
5% 06 06 B 30 48
6" 07 07 N 31 49
& 08 08 M 32 50
g* 09 09 < 33 51
9(0A 10 T 34 52
0) 0B 11 2 35 53
N ocC 12 Shift(Right) 36 54
=+ oD 13 PRTSC* a9 55
Backspace OE 14 ALT 38 56
Tab 0F 15 Space 39 i
Q 10 16 Caps Lock 3A 58
w il 17 F1 3B 59
E 12 18 F2 3C 60
R 13 19 F3 3D 61
ik 14 20 F4 3E 62
Y 15 21 F5 3F 63
8] 16 22 F6 40 64
[17 23 F7 41 65
O 18 24 F8 42 66
p 19 25 F9 43 67
[1A 26 F10 44 68
] 1B 27 Num Lock 45 69
Return/Enter 1C 28 Scroll Lock 46 70
CTRL 1D 29 7 home 47 71
A IE 30 8 Up 48 72
S IF 31 9 Pg Up 49 73
D 20 32 - 4A 74
¥ 21 33 4 left 4B 715
G 22 34 5 4aC 76
H 23 35 6 Right 4D i)
J 24 36 + 4E 78
K 25 37 1 End 4F 79
I 26 38 2 Down 50 80
54 27 a9 3 Pg Dn 51 81
i 29 41 .DEL 53 83
Shift(Left) 2A 42

Keyboard Scan-Codes E-1

3

Converting Programs to VBASICA

If you have programs written in a BASIC other than VBASICA, some
minor adjustments may be necessary before running them. This
appendix describes specific things to look for when converting BASIC
programs to VBASICA.

String Dimensions

Delete all statements that declare the length of strings. A statement
such as DIM A$(1,J), which dimensions a one-dimensional string array
for J elements of length I. should be converted to the VBASICA
statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation.
Each of these must be changed to a plus sign, the operator used in
VBASICA for string concatenation.

In VBASICA, the MID$, RIGHTS$, and LEFTS functions are used to
take substrings of strings. Forms used by other BASICs, such as A$(I)
to access the Ith character in A$, or A$(LJ) to take a substring of A$
from position I to position J, must be changed as follows:

OTHER BASIC VBASICA
X$ = AS(I) X$ =MID$(A$.1,1)
X$ = A$(1]) X$ = MID$(A$.1.J-1 + 1)

Converting Programs to VBASICA F-1

If the substring reference is on the left side of an assignment and you
use X$ to replace characters in A$, convert as follows:

OTHER BASIC VBASICA

A$()=X$ MID$(AS$,1,1) = X$
A$(1,J9)=X$ MID$(AS,1J-1 + 1) = X$§

Multiple Assignments

Some BASICs allow statements of the form:
10 LET B=C=0

to set B and C equal to zero. If this statement appears in a VBASICA
program, VBASICA interprets the second equal sign as a logical
operator, and sets B equal to — 1 if C is equal to 0. To make sure that
this statement is interpreted correctly, convert it to two assignment
statements:

10 C=0:B=0

Multiple Statements

Some BASICs use a backslash (\) to separate multiple statements on a
line. With VBASICA, be sure all statements on a line are separated by
a colon ().

MAT Functions

Programs using the MAT functions available in some BASICs must be
rewritten using FOR..NEXT loops to execute properly.

E-2 VBASICA

RUN<filename>[,R]

Loads the program from disk into memory and runs it. RUN deletes
the current memory contents and closes all files before loading the pro-
gram. If the R option is included. all open data files are kept open.

RUN < filename > R and LOAD < filename > R are equivalent.
MERGE<filename>

Loads the program from disk into memory without deleting the
current memory contents. Line numbers used by the disk program are
merged with the line numbers in memory. If two lines have the same
number, only the line from the disk program is saved. After a MERGE
command, the merged program resides in memory, and VBASICA
returns to command level.

KILL<filename>

Deletes the specified file from the disk. < filename > can be a pro-
gram file, or a sequential or random access data file.

NAME <old filename> AS <new filename>

Changes the name of a disk file. NAME can be used with program
files, random files, or sequential files.

G.2 Protected File

To save a program in an encoded binary format, use the P (Protect)
option with the SAVE command:

SAVE "MYPROG",P
A program saved in this way cannot be listed or edited. You may also

want to save an unprotected copy of the program for listing and edit-
ing purposes.

G-2 VBASICA

G

VBASICA Disk I/O

This appendix describes disk I/O procedures. If you are new to
VBASICA or you are getting disk-related errors, read through these
procedures and program examples to make sure you’re using all the
disk statements correctly.

Wherever a filename is required in a disk command or statement, use
a name that conforms to your operating system’s requirements.

G.1 Program File Commands

Here is a review of the commands and statements used in program file
manipulation.

SAVE<filename>[,A]

Writes the program in memory to a disk file. The A option writes the
program as a series of ASCII characters; otherwise, VBASICA uses a
compressed binary format.

LOAD<filename>[,R]

Loads a program from a disk file into memory. The R option runs the
program immediately.

LOAD deletes the current contents of memory and closes all files
before LOADing. If R is included, however, open data files are kept
open. Programs can be chained or loaded in sections and still access
the same data files.

LOAD < filename > ,R and RUN < filename > ,R are equivalent.

VBASICA Disk 1/O G-1

G.3 Disk Data Files—Sequential and Random
1/0

Two types of disk data files are created and accessed by a VBASICA
program: sequential files and random access files.

G.3.1 Sequential Files

Although sequential files are easier to create than random files, they
are not as fast or flexible when accessing the data. Data written to a
sequential file is a series of ASCII characters stored one item after

another (sequentially) in the order it is sent. Data is read back the
same way.

The statements and functions used with sequential files are:

OPEN

CLOSE

PRINT#, PRINT# USING
EOF

INPUT#, LINE INPUT#
LOC

WRITE#

Follow these steps to recreate a sequential file and access the data in
the file:

1. OPEN the file in O mode;

OPEN "O",#1, "DATA"

2. Write data to the file using the PRINT# statement. (WRITE# can
be used instead.)

PRINT#1,A%;B%;C$

VBASICA Disk 1/0 G-3

3. To access the data in the file, you must CLOSE the file and reopen
it in “I”” mode.

CLOSE #1
OPEN "I",#1,"DATA"

4. Use the INPUT# statement to read data from the sequential file
into the program.

INPUT#1,X$,Y%,2%

Here is a short program that creates a sequential file, “DATA”, from
information you enter at the kevboard:

10
20
25
30
40
50
60

RUN

OPEN "O",#1,"DATA"

INPUT "NAME";N$

IF N$="DONE" THEN END
INPUT "DEPARTMENT";D$
INPUT "DATE HIRED";H$%
PRINT#1,N$;",";D$;"," ;H$
PRINT:GOTO 20

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/83

NAME? MANFRED MANN
DEPARTMENT? KEYBOARD REPAIR
DATE HIRED? 08/16/83

G-4

VBASICA

The next program accesses the file created in the previous example and
displays the name of everyone hired in 1983:

10 OPEN "I" #], 6 "DATAM

20 INPUT#1,N$,D$, H$

30 IF RIGHT$(H$,2)="78" THEN PRINT N%
40 GOTO 20

RUN

EBENEZER SCROOGE

MANFRED MANN

Input past end in 20

Ok

The preceding program reads (sequentially) every item in the file.
When all the data is read, line 20 causes an “Input past end” error. To
avoid getting this error, insert the following line 15, which uses the
EOF function to test for end-of-file:

15 IF EQOF(l) THEN END
Then change line 40 to:

GOTO 15

A program that creates a sequential file can also write formatted data
to the disk with the PRINT# USING statement. For example, the
statement:

PRINT#1, USING"#### ## ";A,B,C,D
can be used to write numeric data to disk without explicit delimiters.
The comma at the end of the format string serves to separate the items
in the disk file.
When used with a sequential file, the LOC function returns the

number of sectors that have been written to or read from the file since
it was OPENed. (A sector is a 128-byte block of data.)

VBASICA Disk 1/0 G-5

Adding Data to a Sequential File

If you want to add data to the end of a sequential file residing on disk,

you cannot simply open the file in O mode and start writing data. If o
you do this, you destroy the current contents of the sequential file.
Instead, use the following procedure (used here to add data to an exist-

ing file called NAMES):

1. OPEN NAMES in Insert mode.

. OPEN a second file called COPY in O mode.

. Read in the data in NAMES and write it to COPY.
. CLOSE NAMES and KILL it.

. Write the new information to COPY.

. Rename COPY as NAMES and CLOSE.

. Now there is a disk file called NAMES that includes all previous
data plus the new data vou just added.

=1 Oy a B W N

The pext example illystrates this technique; . 4 . ™

10 ON ERROR GOTO 2000

20 OPEN "I",#1, "NAMES"

30 REM IF. FILE EXISTS, WRITE IT TO "COPY!

40 OPEN "0" #2 "COPY"

50 IF EOF(1l) THEN 20

60 LINE INPUT#1, A%

70 PRINT#2,A$

80 GOTO 50

90 CLOSE #1

100 KILL "NAMES"

110 REM ADD NEW ENTRIES TO FILE

120 INPUT "NAME";N$

130 IF N$=""THEN 200 'CARRIAGE RETURN EXITS
INPUT LOOP

140 LINE INPUT "ADDRESS? ";A$

150 LINE INPUT "BIRTHDAY? ";B$

160 PRINT#2,N$ il

170 PRINT#2, A%

180 PRINT#2,B$

190 PRINT:GOTO 120

G-6 VBASICA

200 CLOSE

205 REM CHANGE FILENAME BACK TO "NAMES"

210 NAME "COPY" AS "NAMES"

2000 IF ERR=53 AND ERL=20 THEN OPEN
wQ",#2,"COPY" :RESUME 120

2010 ON ERROR GOTO O

The preceding program can be used to create or add to a file called
NAMES. This program also shows how to use LINE INPUT# to read
strings that contain commas from the disk file. Remember. LINE
INPUT# reads in characters from the disk until it sees a carriage
return or it has read 255 characters. (It does not stop at quotation
marks or commas.)

The error-trapping routine in line 2000 traps a “File does not exist”
error in line 20. When this happens, the statements that copy the file
are skipped, and COPY is created as a new file.

G.3.2 Random Files

You need more program steps to create and access random files than
you do with sequential files; however, there are advantages to taking
the extra trouble. One advantage is that random files require less room
on the disk; VBASICA stores them in a packed binary format. (A
sequential file is stored as a series of ASCII characters.) The biggest
advantage to random files is that data is accessed randomly. You don’t
have to read through all the information, as you do with sequential
files. Random access is possible because the information is stored and
accessed in distinct units called records. Each record is numbered,
making it easy for VBASICA to locate the record you need.

VBASICA Disk 1/0 G-7

The statements and functions used with random files are:

OPEN

PO

MKI$, MKS$, MKD$
FIELD

CLOSE

CVI, CVS, CVD
LSET/RSET

505

GET

Creating a Random File

Use these program steps to create a random file.

14

OPEN the file for random access (R mode). This example specifies a
record length of 32 bytes. If the record length is omitted, the default
is 128 bytes.

OPEN "R", #l,"FILE",32

. Use the FIELD statement to allocate space in the random buffer for

the variables to be written to the random file.

FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$

. Use LSET to move the data into the random buffer. Numeric values

must be put into strings when put in the buffer. To do this, use the
“make” functions: MKI$ to make an integer value into a string;
MKS$ for a single-precision value; and MKD$ for a double-
precision value.

LSET N$-X$
LSET A$-MKS$ (AMT)
LSET P$-TEL$

G-8 VBASICA

4. Finally, use the PUT statement to write data from the buffer to the
disk:

PUT #1

, CODE%,

The next example accepts input data from the keyboard and writes it
to a random file:

10
20
30
40
50
60
70
80
90

OPEN

FIELD
INPUT
INPUT
INPUT
INPUT

WRY,#1,"FILE", 32

#1, 20 AS N§, 4 AS A$, 8 AS P§
"2-DIGIT CODE";CODE%

"NAME" ; X$

"AMOUNT" ; AMT

"PHONE" ; TEL$: PRINT

LSET N$=X$

LSET A$=MKS$(AMT)
LSET P$=TEL$

100 PUT #1,CODE

110 GOTO 30

Each time the PUT statement is executed, a record is written to the
file. The two-digit code input in line 30 becomes the record number.

Do not use a FIELDed string variable in an INPUT or LET statement.
This causes the pointer for that variable to point into string space
instead of the random file buffer.

VBASICA Disk 1/0 G-9

Accessing a Random File
These program steps are required to access a random file:
1. OPEN the file in “R” mode:

OPEN "R",#l1,"FILE",K6 32

(89

. Use the FIELD statement to allocate space in the random buffer for
the variables that will be read from the file.

FIELD #1 20 AS N$, 4 AS A%, 8 AS F$

If a program does input and output on the same random file, you
can often use just one OPEN statement and one FIELD statement.

3. Use the GET statement to move the desired record into the random
buffer:

GET #1,CODE%

4, The data in the buffer can now be accessed by the program. Convert
numeric values back to numbers using the “convert” functions: CVI
for integers: CVS for single-precision values; and CVD for double-
precision values:

PRINT N$
PRINT CVS(A$)

Using this procedure, you can use a three-digit code to access and
display records in the random file “FILE™ created in the last example:

10 OPEN "R",#1,"FILE",b32

20 FIELD #1, 20 AS N$, 4 AS A%, 8 AS P%
30 INPUT "2-DIGIT CODE";CODE%

40 GET #1,CODE%

50- PRIENT -N¥

60 PRINT USING "$@###. ##";CVS(A$)

70 PRINT P$:PRINT

80 GOTO 30

G-10 VBASICA

With random files, the LOC function returns the current record
number. The current record number is computed by adding one to the
number of the last record used in a GET or PUT statement. For exam-
ple, this statement ends program execution if the current record
number in file 1 is higher than 50:

IF LOC(1)=50 THEN END

The next program is an inventory program that uses random file
access. In this program, the record number is also the part number,
and it is assumed the inventory uses no more than 100 different part
numbers. Lines 900-960 initialize the data file by writing CHR$(255)
as the first character of each record. This character is used later (line
270 and line 500) to determine whether an entry already exists for that
part number. Lines 130-220 show the different inventory functions
that the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine. Here is the
inventory program:

120 OPEN iR, @1, F INVEN/DRT", 891 | ' 11

125 FIELD#1,1 AS F$,30 AS D$,2 AS Q$,2 AS R$ 4 AS P$

130 PRINT;PRINT "FUNCTIONS:":PRINT

135 PRINT 1,"INITIALIZE FILE"

140 PRINT 2,"CREATE A NEW ENTRY"

150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"

160 PRINT 4,"ADD TO STOCK"

170 PRINT 5,"SUBTRACT FROM STOCK"

180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"

220 PRINT:PRINT:INPUT"FUNCTION"; FUNCTION

225 IF (FUNCTION<1)OR(FUNCTION>6) THEN PRINT
"BAD FUNCTION NUMBER":GC TO 130

230 ON FUNCTION GOSUB 900,250,390,480,560,680

240 GOTO 220

250 REM BUILD NEW ENTRY

260 GOSUB 840

270 IF ASC(F$)>255 THEN INPUT"OVERWRITE";AS$:
IF A$>"Y" THEN RETURN

280 LSET F$=CHR$(0

290 INPUT "DESCRIPTION";DESC$

300 LSET D$-DESC$

310 INPUT "QUANTITY IN STOCK";Q%

320 LSET Q$=MKIS$(Q%)

330 INPUT "REORDER LEVEL";R%

340 LSET R$=MKI$(R%)

350 INPUT "UNIT PRICE":P

VBASICA Disk I/O G-11

360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
870
580
590
600
610
620
630
640

650
660
670
680
690
TX0
T20

730
740
840
850

890
900
910
920

940

950
9260

G-12

LSET P$=MKS$(P)

PUT#1, PARTY,

RETURN

REM DISPLAY ENTRY

GOSUB 840

IF ASC (F$)-255 THEN PRINT "NULL ENTRY":RETURN
PRINT USING "PART NUMBER ###";PART%

PRINT D$

PRINT USING "QUANTITY ON HAND #####":CVI(Q$)
PRINT USING "REORDER LEVEL #####";CVI(R$)
PRINT USING "UNIT PRICE§$##.##";CVS(P$)
RETURN

REM ADD TO STOCK

GOSUB 840

IF ASC(F$)=255 THEN PRINT "NULL ENTRY" :RETURN
PRINT D$:INPUT"QUANTITY TO ADD";A%
QE=CVI(Q$)+A%

LSET Q$=MKI$(QZ%)

PUT #1,PARTY

RETURN

REM REMOVE FROM STOCK

GOSUB 840

IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
PRINT D$

INPUT "QUANTITY TO SUBTRACT";S%

QE-CVI(Q$)

IF (Q%-S%)<0 THEN PRINT "ONLY";Q%;"IN STOCK":GOTO 600

Q%F=Q%-S%

IF Q%=-<CVI(R$) THEN PRINT"QUANTITY NOW";Q%;
"REORDER LEVEL";CVI(R$)

LSET Q$=MKI$(Q%)

PUT#1, PARTZ

RETURN

DISPLAY ITEMS BELOW REORDER LEVEL

FOR I=1 TO 100

GET#1, I

IF CVI(Q$)CVI(R$) THEN PRINT D$;"QUANTITY";
CVI (Q$)TAB(50) "REORDER LEVEL";CVI(R$)
NEXT I

RETURN

INPUT "PART NUMBER'";PARTY
IF(PART%<1)O0R(PART%>100)THEN PRINT "BAD PART
NUMBER" : GOTO 840 ELSE GET #1,PARTZ:RETURN
END

REM INITIALIZE FILE

INPUT "ARE YOU SURE":;B$:IFB$<>"Y" THEN RETURN
LSET F$-CHR$(255)

FOR I=1 TO 100

PUT#1, I

NEXT I

RETURN

VBASICA

Index

: symbol, 1-2, 2-4
= symbol, 3-96
symbol, 3-153
. symbol, 3-153
+ symbol, 3-153
— symbol, 3-133
** symbol, 3-154
$$ symbol, 3-154
**§ symbol, 3-154
, symbol, 3-154

" symbol (four carets), 3-155

. symbol, 3-155
% symbol, 3-155

ABS function, 3-2
animation, 3-70
ASC function, 3-3
ASCII

codes, 2-25, 3-3, B-1, Appendix C

mode, 3-100

to string conversion, 3-3

array
space, 3-54
variables, 2-13
ATN function, 3-3

AUTQO command, 3-4

background
attribute, 3-138
music, 3-125

base pointer [BP], 3-9

batch file, 1-3
baud rates, 3-119

BEEP statement, 3-5
BLOAD command, 3-6, 3-13
border attribute, 3-136

Index

BSAVE command, 3-7, 3-13
buffer size. 1-3

CALL statement, 3-9, 3-41
CDBL function, 3-15
CHAIN statement, 3-15, 3-30
character set, 2-1
characters, special, 2-1
CHDIR command, 1-10, 3-17
CHRS function, 3-18
CINT function, 3-19
CIRCLE statement, 1-13, 3-19
CLEAR command, 3-22
clipping, 1-14, 3-20, 3-98, 3-137, 3-148,
3-158, 3-202
clock interrupt rate, 3-140
CLOSE statement, 3-23
CLS statement, 1-15, 3-24, 3-204
code, keyboard scan, Appendix E
code segment [CS], 3-9
colon, use of, 1-2, 2-4
color screen, 1-12
colors, 3-25
COLOR statement, 1-13, 3-24
Screen mode 0, 3-24 to 3-26
Screen mode 1, 3-27 to 3-28
Screen mode 2, 3-28
COM statement, 3-29
port, 1-16
trap routine, 1-16
COM [/O functions, 4-6
command level prompt, 1-1
COMMON statement, 3-15, 3-30
communications, Chapter 4
buffer, 3-119
channel, 1-16

Index-1

device, 3-130
file, 3-105
port, 4-1
RS-232-C, 1-3, 4-1
telephone line, 3-68, 3-69
trap routine, 3-119
CONT command, 3-31, 3-100, 3-185
control characters
CTRL-A, 2-2, 2-26
CTRL-C, 2-2, 3-5, 3-31, 3-80,
3-85, 3-100
CTRL-G, 2-2
CTRL-H, 2-2
CTRL-I, 2-2
CTRL-J, 2-2
CTRL-L, 3-24
CTRL-R, 2-2
CTRL-S, 2-2, 2-3, 4-6
CTRL-Q, 2-3, 4-6
CTRL-U, 2-3
constants
numeric precision
double, 2-11
single, 2-11
numeric types, 2-9
fixed-point, 2-10
floating-point, 2-10
hex, 2-10
integer, 2-10
octal, 2-10
string, 2-9
control data string, 3-89
coordinates
out-of-range, 1-14, 3-158
relative, 1-14
COS function, 3-32
CSNG function, 3-33
CSRLIN variable, 3-34
CVD function, 3-35
CVI function, 3-35
CVS function, 3-35

Index-2

data

bits, transmit/receive, 3-131

segment [DS], 3-9

types, 2-1
DATA statement, 3-36
DATES$ variable and statement, 3-38
default extension, .BAS, 1-6, 3-6
DEFDBL statement, 2-12, 3-16
DEF FN statement, 3-39
DEFINT statement, 2-12, 3-16
DEF SEG statement, 3-7, 3-14, 3-41
DEFSNG statement, 2-12, 3-16
DEFSTR statement, 2-12, 3-16
DEFtype statement, 3-42
DEF USR statement, 3-43, 3-195
DELETE command, 3-44
delimiters, 3-156
device driver, 3-88, 3-89
device-independent 1/O, 1-1, 1-5
DIM statement, 3-45
direct mode, 1-1, 2-3, 2-8, 2-9, 3-31,

3-40, 3-57

directories, 1-8
disk file types, 3-94
disk 1/0, 3-23, Appendix G

file commands, G-1

protected file, G-2

random files, G-7

sequential files, G-3
DOS commands

CHDIR, 3-17

MKDIR, 3-114

MODE, 1-12

PATH, 3-50

RMDIR, 3-170
DRAW statement, 1-13, 3-46

EDIT command, 2-25, 3-49
END statement, 3-23, 3-53
ENVIRON statement. 1-10, 3-50
ENVIRONS function, 1-10, 3-52

VBASICA

Environment String Table, 3-50, 3-51
EOF function, 1-11, 3-55
ERASE statement, 3-54
ERDEV function, 3-56
ERDEV$ function, 3-56
ERL variable, 3-57
ERR variable, 3-57
error
handling, 3-120
messages, 1-11, 2-27, Appendix A
trapping, 3-120
ERROR statement, 3-58
event
specifiers, 1-16
trap, 1-17
line number, 1-17
trapping, 1-1, 1-15
controlling, 1-17
EXP function, 3-60

/F: option, 1-3
FIELD statement, 3-61
file, 1-5
communications, 3-105
extension, default, 1-3
number, 1-3
size, 3-105
specification, 1-5
filename, 1-3
FILES statement, 3-62
filled rectangle, 3-97
FIX function, 3-64
FOR..NEXT statement, 3-65
FRE function, 3-67
Full Screen Editor, 2-1. 2-3 to 2-9,
3-49
function keys, 2-5
functional operators, 2-24
functions
intrinsic, 2-24
mathematical. Appendix D
user-defined, 2-24

Index

GET statement for file I/O, 3-68

GET and PUT statements for COM,
3-69

GET and PUT statements for graphics,
3.70

GOSUB...RETURN statement, 1-15,
1-17, 1-18, 3-74, 3-118

GOTO statement, 3-75, 3-78

graphics, 3-46

mode, 3-136, 3-143, 3-145, 3-148,

3-158

GRAPHICS.COM, 1-13

Graphics Macro Language (GML), 3-46

HEXS$ function, 3-77
high-resolution graphics, 1-12

[F statement, 3-78

IF...THEN loop, 3-78

indirect mode, 1-1

initialization, 1-2

INKEYS variable, 1-11, 1-16, 3-80
INP function, 3-81

input editing, 2-25

INPUT statement, 1-11, 1-16, 3-82
INPUT# statement, 3-84

INPUT$ function, 1-11, 3-85
INSTR function, 3-86

INT function, 3-87

integer division, 2-17

1/O buffer, 3-128

IOCTLS$ function, 3-89

key
assignment string, 3-91
special, 2-1
trap, 3-91

KEY statement, 3-90
KEY LIST, 3-90
KEY OFF, 3-90
KEY ON, 1-16, 3-90

Index-3

KEY (n) statement, 3-93

KEY (n) OFF, 3-93

KEY (n) ON, I-16, 3-93

KEY (n) STOP, 3-93
keyboard scan codes, Appendix E
KILL command, 3-94

LEFTS$ function, 3-95
LEN function, 3-96
LET statement, 3-37, 3-96
line

format, 1-2

logical, 2-3

numbers, 1-2

straight, 3-97
LINE statement, 1-13, 3-97
LINE INPUT statement, 3-99
LINE INPUT# statement, 3-100

linefeed/carriage return sequence, 3-99,

3-100
LIST command, 2-4, 3-101
LLIST command, 3-104
LOAD command, 3-103
LOC function, 3-105
LOCATE statement, 3-106, 3-204
LOF function, 3-108
LOG function, 3-109
logical operators, 2-20 to 2-24
LPOS function, 3-109
LPRINT and LPRINT USING
statements, 3-110, 3-189
LSET and RSET statements, 3-111

MERGE command, 3-112

MIDS$ function and statement, 3-113
MKDIR command, 1-10, 3-114
MKD$ function, 3-115

MKI$ function, 3-115

MKS$ function, 3-115

Index-4

mode
direct, 1-1, 3-31
graphics, 1-13, 3-136, 3-143, 3-145,
3-148
indirect, 1-1
music foreground, 3-141
random I/0, 3-129
resolution, 1-12
text, 1-13
MODE command, 1-12
modulus arithmetic, 2-17, 2-18, 3-12
monochrome screen, 1-12
movement commands, 3-47
Music
Foreground mode, 3-141
Macro Language, 3-139
music foreground, 3-125

NAME command, 3-116
NEW command, 2-26, 3-23, 3-117
nonlocal RETURN statement, 1-18
null string, 3-95
numeric

constants, 2-11

fields, 3-153

OCTS function, 3-117

offset [IP], 3-9

ON COM statement, 3-118
ON ERROR GOTO statement, 3-120
ON...GOSUB statement, 3-121
ON...GOTO statement, 3-121
ON KEY(n) statement, 3-122
ON PLAY statement, 3-124
ON TIMER statement, 3-126
OPEN FOR APPEND, 3-130
OPEN statement, 3-23

OPEN COM statement, 3-130
operand, 2-15

VBASICA

operation modes POS function, 3-147

arithmetic, 1-1 precision
logical, 1-1 double, 2-11, 2-14
operators single, 2-11, 2-14, 3-32
arithmetic, 2-16 to 2-18 . PRESET statement, 1-13, 3-148
functional, 2-16, 2-24 to 2-25 PRINT statement, 1-11, 3-38, 3-82,
logical, 2-15, 2-16, 2-20 to 2-24 3-107, 3-149, 3-189, 3-204, 3-212
relational, 2-16, 2-19 printout, 1-13
OPTION BASE statement, 3-134 print positions, 3-149
setting, 3-16 PRINT# statement, 3-156
options PRINT USING statement, 3-151
ALL, 3-16, 3-30 PRINT# USING statement, 3-156
m, 3-113 program statements, 2-3
MERGE, 3-16 prompt, command level, 1-1
R, 3-103 PSET statement, 1-13, 3-73, 3-158
option switches, 1-3 PUT statement, 1-13
JC:, 1-3, 3-108, 4-6
/F:, 1-3 random access memory (RAM), 1-5
/M, 1-4, 3-14 random file buffer, 3-61
/5, 1-3 random number generator, 3-159
OQUT statement, 3-81, 3-135 RANDOMIZE statement, 3-159
output port, 3-135 READ statement, 3-36, 3-161, 3-167
rectangles, 3-97
paint attribute, 3-136 filled, 3-97
PAINT statement, 3-136 re-direction of standard input
parameter address, 3-11 and output, 1-10
parity, 3-131 relational operators, 2-19
passing parameters, 3-11 relative coordinates, 1-14
PATH command, 3-50 REM statement, 3-163
pathnames, 1-5 RENUM command, 3-16, 3-164
PEEK statement, 3-41, 3-146 RESET command, 3-166
physical device, 1-6, 3-128 resolution modes, 1-12
PLAY statement, 3-139 RESTORE statement, 3-36, 3-167
PLAY (n) function, 3-141 RESUME statement, 3-168
PLAY OFF statement, 3-125, 3-142 RETURN statement, 1-15, 3-169
PLAY ON statement, 3-125, 3-142 nonlocal, 1-17
event trapping, 3-142 RMDIR command, 1-10, 3-170
PLAY STOP statement, 3-125, 3-142 RND function, 3-171
PMAP function, 3-143 RUN command, 3-172

POINT function, 1-13, 1-15, 3-145
POKE statement, 3-41, 3-146

Index Index-5

SAVE command, 3-173
scan codes, Appendix E
scan line
starting, 3-106, 3-107
stopping, 3-106, 3-107
screen
color, 1-12
images, 3-71
locations, 1-14
mode 0, 3-24
mode 1, 3-27
mode 2, 3-28
monochrome, 1-12
SCREEN function, 3-176, 3-204
SCREEN statement, 1-12, 1-13, 1-15,
3-174, 3-204
segment registers, 3-10
SGN function, 3-177
SHELL statement, 3-178
SIN function, 3-180
single precision, 3-3, 3-10, 3-32
SOUND statement. 3-181
SPACES$ function, 3-182
space requirements, 2-13
SPC function, 3-183
speaker sounds, 3-3
special
characters, 2-1
keys, 2-1
speed, 3-131
SQR function, 3-184
stack pointer, 3-9
statement
executable, 3-75
nonexecutable, 3-75
STOP statement, 3-23, 3-185
straight lines, 3-97
STRS function, 3-186
STRINGS$ function, 3-187

Index-6

string, 3-11
comparisons, 2-25
fields, 3-152
literal, 3-100
operations. 2-24
variable, 3-100

style, 3-98

SWAP statement, 3-188

switches, option, 1-3
/HIGH, 3-13
/M, 3-14

syntax errors, 2-26

SYSTEM command, 3-189

TAB function, 3-189
TAN function, 3-190
telephone line communications, 3-68.
3-69

text mode, 1-13
tile background, 3-138
tiling, 3-137
TIMES$ function and statement, 3-191
TIMER OFF statement, 3-127, 3-193
TIMER ON statement, 3-127, 3-193
TIMER STOP statement, 3-127, 3-193
transmit/receive data bits, 3-131
trap

recursive, 1-17

routine, 1-15, 3-123

trapping
disabling, 3-123
error, 3-120

event, 1-15, 1-17, 3-29

function key, 3-122

PLAY event, 3-142
TROFF command, 3-194
TRON command, 3-194
TTY program, 4-1 to 4-5
two’s complement, 2-21

VBASICA

type
conversion, 2-14
declaration statements, 3-42

USR function, 3-41, 3-195

VAL function, 3-196
variable, 2-11 to 2-13
array name, 2-13
declaration characters, 2-12
names, 2-12
types, 3-42
VARPTR function, 3-197
VARPTRS function, 3-200
VBASICA
clipping, 3-20
communications, Chapter 4
data entry, 2-9 to 2-27
data types, 3-10
disk I/0, Appendix G
editing, 2-1 to 2-9
programs, 2-3, 2-4, Appendix F
VIEW statement, 3-201, 3-204
VIEW PRINT statement, 3-204

WAIT statement, 3-205

WHILE... WEND statement, 3-206
WIDTH statement, 3-24, 3-207
window screen, 3-210

WINDOW statement, 3-146, 3-209
WRITE statement, 3-212
WRITE# statement, 3-213

Index

Index-7

	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)
	Document (73)
	Document (74)
	Document (75)
	Document (76)
	Document (77)
	Document (78)
	Document (79)
	Document (80)
	Document (81)
	Document (82)
	Document (83)
	Document (84)
	Document (85)
	Document (86)
	Document (87)
	Document (88)
	Document (89)
	Document (90)
	Document (91)
	Document (92)
	Document (93)
	Document (94)
	Document (95)
	Document (96)
	Document (97)
	Document (98)
	Document (99)
	Document (100)
	Document (101)
	Document (102)
	Document (103)
	Document (104)
	Document (105)
	Document (106)
	Document (107)
	Document (108)
	Document (109)
	Document (110)
	Document (111)
	Document (112)
	Document (113)
	Document (114)
	Document (115)
	Document (116)
	Document (117)
	Document (118)
	Document (119)
	Document (120)
	Document (121)
	Document (122)
	Document (123)
	Document (124)
	Document (125)
	Document (126)
	Document (127)
	Document (128)
	Document (129)
	Document (130)
	Document (131)
	Document (132)
	Document (133)
	Document (134)
	Document (135)
	Document (136)
	Document (137)
	Document (138)
	Document (139)
	Document (140)
	Document (141)
	Document (142)
	Document (143)
	Document (144)
	Document (145)
	Document (146)
	Document (147)
	Document (148)
	Document (149)
	Document (150)
	Document (151)
	Document (152)
	Document (153)
	Document (154)
	Document (155)
	Document (156)
	Document (157)
	Document (158)
	Document (159)
	Document (160)
	Document (161)
	Document (162)
	Document (163)
	Document (164)
	Document (165)
	Document (166)
	Document (167)
	Document (168)
	Document (169)
	Document (170)
	Document (171)
	Document (172)
	Document (173)
	Document (174)
	Document (175)
	Document (176)
	Document (177)
	Document (178)
	Document (179)
	Document (180)
	Document (181)
	Document (182)
	Document (183)
	Document (184)
	Document (185)
	Document (186)
	Document (187)
	Document (188)
	Document (189)
	Document (190)
	Document (191)
	Document (192)
	Document (193)
	Document (194)
	Document (195)
	Document (196)
	Document (197)
	Document (198)
	Document (199)
	Document (200)
	Document (201)
	Document (202)
	Document (203)
	Document (204)
	Document (205)
	Document (206)
	Document (207)
	Document (208)
	Document (209)
	Document (210)
	Document (211)
	Document (212)
	Document (213)
	Document (214)
	Document (215)
	Document (216)
	Document (217)
	Document (218)
	Document (219)
	Document (220)
	Document (221)
	Document (222)
	Document (223)
	Document (224)
	Document (225)
	Document (226)
	Document (227)
	Document (228)
	Document (229)
	Document (230)
	Document (231)
	Document (232)
	Document (233)
	Document (234)
	Document (235)
	Document (236)
	Document (237)
	Document (238)
	Document (239)
	Document (240)
	Document (241)
	Document (242)
	Document (243)
	Document (244)
	Document (245)
	Document (246)
	Document (247)
	Document (248)
	Document (249)
	Document (250)
	Document (251)
	Document (252)
	Document (253)
	Document (254)
	Document (255)
	Document (256)
	Document (257)
	Document (258)
	Document (259)
	Document (260)
	Document (261)
	Document (262)
	Document (263)
	Document (264)
	Document (265)
	Document (266)
	Document (267)
	Document (268)
	Document (269)
	Document (270)
	Document (271)
	Document (272)
	Document (273)
	Document (274)
	Document (275)
	Document (276)
	Document (277)
	Document (278)
	Document (279)
	Document (280)
	Document (281)
	Document (282)
	Document (283)
	Document (284)
	Document (285)
	Document (286)
	Document (287)
	Document (288)
	Document (289)
	Document (290)
	Document (291)
	Document (292)
	Document (293)
	Document (294)
	Document (295)
	Document (296)
	Document (297)
	Document (298)
	Document (299)
	Document (299a)
	Document (300)
	Document (301)
	Document (302)
	Document (303)
	Document (304)
	Document (305)
	Document (306)
	Document (307)
	Document (308)
	Document (309)
	Document (310)
	Document (310a)
	Document (311)
	Document (312)
	Document (313)
	Document (314)
	Document (315)
	Document (316)
	Document (317)
	Document (318)
	Document (319)
	Document (320)
	Document (321)
	Document (322)
	Document (323)
	Document (324)
	Document (325)
	Document (326)
	Document (327)
	Document (328)
	Document (329)
	Document (330)

